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Abstract— In this work, a novel quaternary algebra has been proposed that can be used to implement an arbitrary quaternary logic 

function in more than one systematic ways. The proposed logic has evolved from and is closely related to the Boolean algebra for 

binary domain; yet it does not lack the benefits of a higher-radix system. It offers seamless integration of the binary logic functions 

and expressions through a set of transforms and allows any binary logic simplification technique to be applied in quaternary domain. 

Since physical realization of the operators defined in this logic has recently been reported, it has become very important to have a 

well-defined algebra that will facilitate the algebraic manipulation of the novel quaternary logic and aid in designing various complex 

logic circuits. Therefore, based on our earlier works, here we describe the complete algebraic representation of this logic for the first 

time. The efficacy of the logic has been shown by designing and comparing several common logic circuits with existing designs in 

both binary and quaternary domain. 
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I.  INTRODUCTION  

For many years digital devices have been designed using 

binary logic. Even today, the latest computing systems are 

designed and developed using only the binary logic. Since 

multi-valued logic enables more information to be packed in a 

single digit, researchers have been working on multi-valued 

logic for many years [1]-[18]. With the development of novel 

electronic and optical devices, it is now possible to implement 

circuits for more complicated logic systems [4]-[8]. Many of 

these devices are capable of dealing with more than two logic 

states, so their efficiency could be utilized if we use multi-

valued logic for digital circuits. Some multi-valued logic 

systems such as ternary and quaternary logic schemes have 

been developed and they have been being experimented for a 

long time [1]. These logic systems are derived as 

propositional or quantum logic [1],[9].  

Quaternary logic has several advantages over binary logic. 

Since it requires half the number of digits to store any 

information than its binary equivalent, it is good for storage; 

given that the quaternary storage mechanism is less than twice 

as complex as the binary system. For the same reason, 

quaternary devices require simpler parallel circuits to process 

same amount of data than that needed in binary logic devices. 

Inspired by such advantages, many researchers proposed 

different variants of quaternary logic in the past decades, 

demonstrated theoretically and experimentally [9]-[19]. 

Although there are numerous references on quaternary logic 

in the literature, we introduced yet another new and unique 

variant of quaternary logic for the first time in our earlier 

works [20]-[26]. This logic offers all the benefits of a higher 

radix system, yet can readily take advantage of existing 

binary circuit designs and design optimization rules which 

were developed over many decades of relentless effort by 

countless researchers. The simplicity and easy scalability of 

the common logic circuits offered by the new logic was 

evident in our earlier reports, where we presented the design 

of several types of adders, comparators, encoders and 

decoders [21]-[26]. As a matter of fact, it is possible to 

implement any quaternary function in two types of sum-of-

products (SOP) expressions, one of them is only possible 

using the proposed quaternary logic. This SOP expression 

integrates existing designs and design methodologies in a 

systematic way, which can be optimized further through 

algebraic manipulation [25]. The novelty of this logic has 

drawn attention of many researchers working in the field of 

quaternary logic and as a result, very recently, there have 

been several reports on physical realization of this logic [27]-

[30]. None of these works discuss the prospects and 

completeness of this logic as an extension of Boolean algebra, 

neither do we see a set of rules to facilitate the design of 

arbitrary functions that would meet the growing need of a 

general-purpose higher-radix logic system. Therefore, based 

on our earlier works, here we describe the complete algebraic 

representation of this logic for the first time. We use the 

electronic realization scheme demonstrated in [27]-[29] to 

calculate some physical parameters such as transistor count 

and gate depth in a logic circuit.     

In our present work, we start our discussion in Section II with 

a formal description of the quaternary logic, including the 
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definition and classification of the operators. Here we also 

briefly discuss the physical realization of the logic gates. In 

Section III, the fundamental properties of quaternary algebra 

and its operators are presented along with some important 

theorems. Then we present the method of expressing arbitrary 

quaternary functions in Section IV where two different 

representations of sum-of-products (SOP) expressions are 

shown. Section V is dedicated to the computation of 

theoretical upper bounds of gate count and gate depth for both 

forms of SOP discussed in Section IV. In Section VI, design 

of several combinational logic blocks such as multiplexer, 

decoder and demultiplexer are shown using the proposed 

quaternary algebra. Based on these designs, we present a 

comparative analysis of the different variants of quaternary 

logic in Section VII. 

II. QUATERNARY ALGEBRA 

Quaternary algebra is defined as a set of operators and a set of 

values {0, 1, 2, 3} for any valid proposition. Quaternary digits 

{0, 1, 2, 3} can be imagined as 2-bit binary equivalents 00, 

01, 10, 11. A single quaternary digit is called a qudit when it 

is expressed as a number. If the bits of the binary equivalent 

of a qudit interchange their positions and still the quaternary 

state remains unchanged, then it is said to have binary 

symmetry; otherwise it is asymmetrical. It should be noted 

that quaternary states 0 and 3 are symmetrical, while 1 and 2 

are asymmetrical. 

A. Classification of quaternary operators 

There are several operators in the proposed quaternary 

algebra which are sufficient to describe any quaternary 

function. We classify these operators in two classes. 

a) Fundamental Operators: 

Fundamental operators are those selected operators that are 

sufficient to completely define the quaternary algebra and can 

be used to derive other operators.  

b) Functional operators: 

The functional operators are those operators that can be 

expressed by a combination of two or more fundamental 

operators.   

TABLE I.  CLASSIFICATION OF QUATERNARY OPERATORS 

Quaternary Operators 

Fundamental Operators Functional Operators 

AND, OR, NOT, Bitswap Inward Inverter, 

Outward Inverter, 

Equality, MIN, MAX, 

XOR 

 

It will be shown later that functional operators can also be 

used to express any arbitrary quaternary function; the reason 

behind this classification lies in our consideration of 

generality and flexibility. In subsection III-C, we will show 

three sets of operators, comprising both fundamental and 

functional operators, each set being sufficient for expressing 

any arbitrary quaternary function. This redundancy is allowed 

in the logic system for practical purposes - each set offers 

certain distinct benefits when it comes to physical realization, 

yet all of them are connected through various laws of the 

algebra. Therefore, the operators offering the most flexible 

and wide range of applications are chosen as fundamental 

operators, and the rest are defined as their derivatives 

(functional operators). This will be discussed in more details 

in subsequent sections.  

B. Definition of quaternary operators 

A quaternary digit can be expressed by two binary digits 

packed together using the following notion - 

( )
100101 2, aaaaA +×≡=     (1) 

where a1 and a0 are the constituent bits of the quaternary digit 

A and the right side of (1) denotes the magnitude of A in 

decimal system. In general, the fundamental dyadic operators 

work like bitwise binary operators if the above notion is 

adopted,       

),,,(),( 0101 bbaaF=BAF ),( , ),( 0011 bafbaf=   

      (2) 

where F and f stands for similar quaternary and binary 

operators respectively. The above notation of expressing 

quaternary digits (operators) in terms of binary digits 

(operators) is called packed-binary representation of 

quaternary digits (operators). 

The mathematical symbols and truth tables of all operators are 

shown in Table II. In Table II, some monadic/unary operators 

have different symbols from our earlier works [20]-[24] to 

improve readability and facilitate type-setting; the symbol of 

outward inverter Â  is changed to !A and the overhead symbol 

of bitswap A
~

 is changed to ~A.  

Bitswap is the only fundamental operator that does not have 

any binary equivalent and is unique in this algebra (first 

presented in [24]); it swaps the two bits of the binary 

equivalent of the quaternary operand. It leaves the 

symmetrical numbers unchanged but inverts (i.e. NOT) the 

asymmetrical numbers, so this operator can also be defined in 

the following way- 





symmetric  ;

asymmetric  ;
~  Bitswap,Binary 

aa

aa
=a           (3) 
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Using packed-binary representation, the NOT operator can be 

expressed in the following way -  

0101  , , aa=aa=A                                 (4) 

On the other hand, bitswap can be expressed as 

1001  , ,~~ aa=aa=A                               (5) 

When the bitswap operator follows another operator, we get a 

compound form of operators that may be realizable directly 

depending on the technology. Some examples are bitswap 

AND (AND followed by bitswap), bitswap NOR (NOR 

followed by bitswap), bitswap XNOR (XNOR followed by 

bitswap), etc. In the bitswap NAND, NOR, NOT and XNOR, 

the inverter is obviously “NOT”, not the inward or outward 

inverter. However, if an outward or inward inverter follows 

another operator, that is clearly mentioned, such as outward 

AND, inward XOR, etc. Fig. 1 shows the circuit symbols of 

all the fundamental and functional operators. 

 

Figure 1.  Circuit symbols of quaternary operators:  (a) AND, (b) OR, (c) 

NOT, (d) Bitswap, (e) XOR, (f) Inward Inverter, (g) Outward Inverter, (h) 

Equality, (i) MIN, (j) MAX. 

TABLE II.  MATHEMATICAL SYMBOLS AND TRUTH TABLES 

OF QUATERNARY OPERATORS 
†
 

Operands A 0 0 0 0 1 1 1 2 2 3 

B 0 1 2 3 1 2 3 2 3 3 

NOT A  3 3 3 3 2 2 2 1 1 0 

Outward 

inverter 
A!  3 3 3 3 3 3 3 0 0 0 

Bitswap A~  0 0 0 0 2 2 2 1 1 3 

Inward 

inverter 
A′  2 2 2 2 2 2 2 1 1 1 

AND BA ⋅  0 0 0 0 1 0 1 2 2 3 

OR BA +  0 1 2 3 1 3 3 2 3 3 

XOR BA ⊕  0 1 2 3 0 3 2 0 1 0 

Equality 
‡
 ( )BAE ,  3 0 0 0 3 0 0 3 0 3 

MIN BA ⋅  0 0 0 0 1 1 1 2 2 3 

MAX BA +  0 1 2 3 1 2 3 2 3 3 
‡ Alternative symbol for equality used primarily in SOP expressions, AB = BA 

= E(A , B). 

† All dyadic operators are commutative with F(A,B) = F(B,A). So identical 

pairs of (A,B) are mentioned only once by showing 10 out of 16 possible 

combinations. 

 

The equality operator is defined as - 

( ) ( )


 ≠

B=A

BA
=B=A=ABE=BAE

AB

;3

;0
,,           (6) 

Using packed-binary representation, the functional inverters 

can be expressed as 

1101  , ,!! aa=aa=A                           (7) 

1101  , , aa='aa=A'
                          

(8) 

C. Required Sets of Operators and Their Physical 

Realization 

There are three sets of operators in the proposed algebra, each 

of which is sufficient to express any quaternary function 

algebraically. These sets are listed below – 

(1) AND, OR, NOT, bitswap 

(2) AND, OR, equality 

(3) MIN, MAX, equality 

From the above list, the first two sets are used in form-II and 

form-I of sum-of-products (SOP) expressions respectively, 

which will be discussed in Section IV. The third set can also 

be used as an alternative representation of form-I of SOP as 

shown in [17], this depends on the choice of physical 

realization. Besides, MIN and MAX functions can be more 

efficient in sequential circuits if we compare the design in 

[17] with the ones in [20]. However, MIN (MAX) and AND 

(OR)  are equivalent in the physical realization scheme 

assumed in this work, making them interchangeable if 

needed.   

Another important reason for preferring the first set over the 

others is the fact that all operators in the first set have various 

properties that facilitate algebraic manipulation and 

simplification. De Morgan’s law for the NOT operator, the 

distributive property of bitswap operator are two examples 

that are used widely to simplify many complex expressions. 

On the other hand, the equality operator is rather less flexible 

and we will show later that expressions containing the 

equality operator are often broken down in terms of the 

operators listed in the first set to facilitate simplification. 

Besides, the use of NOT and bitswap enables us to utilize the 

axioms of Boolean algebra and many existing techniques of 

binary logic design in the quaternary domain. For these 

reasons, the operators in the first set are chosen to be the 

fundamental operators and all other operators are described as 

their derivatives (please refer to Appendix A, where equality, 
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MIN and MAX are expressed using AND, OR, NOT and 

bitswap).   

Gogna et al. and Jain et al., in their recent works, reported 

multiple quantum well based spatial wavefunction-switched 

field effect transistors (SWSFET) to be suitable candidates for 

arbitrary quaternary operators [27]-[29]. Chattopadhyay et al. 

also proposed a polarization-based all-optical scheme for 

realizing the quaternary logic [30].  The design given in [27]-

[29] performs a look-up table-based operation using multiple 

voltage lines connected to different quantum wells formed by 

heteroepitaxial superlattice structures. According to their 

design, any unary quaternary operator (inverters, bitswap, etc) 

can be realized by using just one SWSFET; for two-input 

operators at most five SWSFETs are required. However, for 

two-input OR, AND, MIN, MAX gates, only three SWSFETs 

are needed. For equality operator, five SWSFETs are required 

if both inputs are variable; however, only one SWSFET is 

needed if only one input is variable and the other is fixed, 

making it a unary operator. 

III. FUNDAMENTAL PROPERTIES OF QUATERNARY 

ALGEBRA AND ITS OPERATORS  

In this section we will present the fundamental properties of 

quaternary algebra. Then some very important properties of 

quaternary operators will be discussed. These properties are 

helpful to express and manipulate complicated functions 

algebraically to ensure efficient implementation. 

A. Properties of Quaternary Algebra 

The packed-binary representation of quaternary digits and 

operators show that all fundamental operators except the 

bitswap obey the axioms and properties of Boolean operators. 

Most of these properties have their dual forms, where AND 

and OR operators are interchanged, at the same time the 

constants are inverted via NOT. The properties given below 

show that our proposed logic satisfies all the requirements to 

be treated as algebra, as postulated by Huntington [31]. 

a) Closure :   

For every dyadic operator, 3} 2, 1, {0,),F( ∈BA , which is 

evident from definition. For every unary operator, 

3} 2, 1, {0,)G( ∈A . 

b) Complement: 

There exists a unary operator NOT for which the following 

properties are true- 

3 =  1 , 1 =   +  ,  +  =  +  (1) 0011 aaaaAA          (9) 

0 = 0 , 0 =  .  ,  .  = .  (2) 0011 aaaaAA          (10) 

c) Associativity: 

 
( ) ( ) 000111  +  +  ,  +  +  = cbacba ( ) CBA  +  +  =    (11) 

( ) ( ) ( )000111  .  .  ,  .  .  =  .  .  (2) cbacbaCBA

( ) ( ) 000111  .  .  ,  .  .  = cbacba  ( ) CBA  .  .  =    (12) 

d) Commutativity: 

ABababbabaBA  +  = +  , +  = +  , +  =  +  (1) 00110011  

    
(13) 

ABababbabaBA  .  =  .  ,  .  = .  ,  .  =  .  (2) 00110011    

       (14) 

e) Distributivity: 

( ) ( ) ( )000111  .  +  ,  .  +  =  .  +  (1) cbacbaCBA
 

( ) ( ) ( ) ( )00001111  + .   ,   .  + = cabacaba ++

( ) ( )CABA  +  .  +  =
   (15) 

( ) ( ) ( )000111    .  ,   .  =   .  (2) cbacbaCBA +++
 

( ) ( ) ( ) ( )00001111  .   . ,  .   . = cabacaba ++
 

( ) ( )CABA  .    .  = +
 

  
(16)

 

f) Boundedness: 

AaaaaA  =  ,  = 0 +  , 0 +  = 0 +  (1) 0101    (17) 

     AaaaaA  =  ,  = 1 .  , 1 .  = 3 . 0101    (18) 

3 = 1 , 1 = 1 +  , 1 +  = 3 +  (2) 01 aaA    (19) 

      0 = 0 , 0 =0 .  , 0 .  = 0 . 01 aaA    (20) 

B. Properties of Quaternary Operators 

a) Bitswap operator distributes itself over AND and 

OR operators.               

( ) 01010011 ,~+,~ +,+~=+~ bbaababaBA =
  

BA ~+~=
  (21) 

( ) ( ) 01010101 ,~.,~=,.,~=.~ bbaabbaaBA
   

BA ~.~=
   (22) 

b) NOT obeys the De Morgan’s law, when applied to 

the output of OR or AND gates. 

                                            

BAbabababaBA .=.,.=+,+ =+ 00110011   (23) 

BAbabababaBA +++ =,=.,. =. 00110011   (24) 

c) Like NOT, outward inverter also obeys the De 

Morgan’s law, when applied to the output of OR or AND 

gates. 

( ) ( ) ( )000111  +  +  ,  +  +  =  +  +  (1) cbacbaCBA
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( ) 11110011 +,+=,!=+! babababaBA ++  

BAbbaa ! . !=,.,= 1111    (25) 

( ) 11110011 .,.=.,.!=.! babababaBA  

BAbbaa !+!=,+,= 1111    (26) 

d) There is no compact expression that can be used to 

express the distribution of inward inverter over AND or OR 

operators. 

( ) 'babababa'BA 11110011 +,+=+,+=)+(                                                                        

( ) ( ) 11110011 .,.=.,.=. baba'baba'BA  

None of the above can be expressed in a form similar to 

( ) ( )0011 , , , bafbaf . Thus, there is no algebraic expression 

to expand the operation of inward inverter following the AND 

or OR operation.  

e) The order of inward inverter and NOT can be 

reversed.  

                                                               

( ) ( )'Aaaaa'aa'A =, =,,= 111101 =    (27) 

f) The order of outward inverter and NOT can be 

reversed. 

                                                                     

( ) ( )AaaaaaaA ! = , = , = ,! = ! 111101
   

(28) 

g) The order of bitswap and NOT can be altered. 

                                                                 

( ) ( )AaaaaaaA ~ = ,! = , = ,~ = ~ 101001     (29) 

h) The order of bitswap and inward inverter can be 

altered under certain condition, not generally. 

                                                                             

( ) ( ) 0010 , = , = ~ aa'aa'A     (30) 

( ) 1111 , = ,~ = ~ aaaaA'    (31) 

This implies, ( ) ( )A''A ~ = ~  if and only if 01 aa = , i.e. A is 

asymmetric.  

i) The order of bitswap and outward inverter can be 

altered under certain condition, not generally. 

( ) 1111 , = ,~ = !~ aaaaA    (32) 

( ) 0010 , = ,! = ~! aaaaA    (33) 

This implies, ( ) ( )AA ~!= !~  if and only if 01 aa = , i.e. A is 

symmetric.  

j) The order of inward and outward inverters can 

never be reversed under any condition. 

( ) ( ) 1111 , = , = ! aa'aa'A
   

(34) 

( ) 1111 , = ,! = ! aaaa'A
   

(35) 

This implies, ( ) ( )A''A !  ! ≠  under any circumstances. 

C. Theorems of Quaternary Algebra: 

There are several theorems in the proposed quaternary algebra 

that are derived from the fundamental postulates of the 

algebra and properties of the operators. Here we present a list 

of theorems that are useful in algebraic operations - 

a) The Law of Idempotency: 

 AAA  =  +   ,  AAA  =  .       (36) 

b) The Law of Absorption: 

( ) ABAA  =  .  +    ,  ( ) ABAA  =  +  .     (37) 

c) The Law of Identity: 

ABA  =  +    , ABA  =  . ;  for BA =     (38) 

d) The Law of Complements with NOT: 

3 =  +  BA , 0 =  . BA  ;  for BA  =     (39) 

e) The Law of Involution with NOT and bitswap: 

AA  =     ,  ( )AA ~~=       (40) 

f) The Law of Elimination with NOT: 

 YXYXX +=+ .  ,  ( ) YXYXX .. =+    (41) 

g) The Law of Concensus with NOT: 

ZXYXZYZXYX ..... +=++    (42) 

( ) ( ) ( ) ( ) ( )ZXYXZYZXYX ++=+++ ...    (43) 

h) The Law of Interchange with NOT: 

( ) ( ) )(.).(. ZXYXZXYX ++=+    (44) 

( ) ( ) ).(.)(. YXZXZXYX +=++
  

 (45) 

IV. EXPRESSION OF ARBITRARY FUNCTIONS IN 

QUATERNARY ALGEBRA 

In this section, we will show the completeness of our 

proposed logic algebra by demonstrating that any arbitrary 

quaternary function can be expressed in terms of the operators 

described in Section II. We will demonstrate two forms of 

SOP (sum-of-products) to express any function.  
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To describe a set of quaternary variables, we will often use 

the array notation. For example, if a function F takes n inputs 

namely X1, X2, X3, ….. Xn and gives a single output, then we 

write the variables in array form as X = {X1, X2, X3, .... , Xn} 

and the function is written as F(X). Similarly F(X,Y) takes 

two such array operands of same length and gives a single 

scalar output. Like functions, operators can also handle 

arrays. For example, single-output OR and AND operators 

with array inputs are given below: 

n21
1

 ........ X++X+XX
n

=i
i ≡≡ ∑∑X    (46) 

n21
1

. ........ .. XXXX
n

=i
i ≡≡ ∏∏ X    (47) 

However, functions (operators) with multiple parallel 

instances can be expressed as function (operator) arrays. For 

functions arrays, both inputs and functions are identified in 

boldface. The functions (operators) take one or more input 

arrays of same length and generate an output array with same 

length. Some examples are given below- 

{ }),(),.......,,(),( nn11 YXFYXF≡YXF       (48) 

( )




=

≠

ii

ii

BA

BA
=

everyfor;3

everyfor;0
,BAE    (49) 

{ }n21 ,.......,, XXX≡X    (50) 

{ }nn2211 ,.......,, Y+XY+XY+X+ ≡YX    (51) 

nn2211 . ........ ... YX++YX+YX≡∑ YX    (52) 

A. Implementation of any function in quaternary algebra 

(Form-I of SOP): 

Lemma 1: It is possible to generate a minterm with any value 

i.e. 1, 2 or 3 for a particular set of input values for a finite 

number of variables using only the equality and AND 

operators. 

Let us consider a set of n variables X={X1, X2, …, Xn}. For a 

particular set of inputs { }n21 ,.......,, VVV=V  where 

{ }0,1,2,3i ∈V , a function MD(X,V) would produce an output 

of 0 or D, where D is 1, 2 or 3. The functions defined as 

follows: 





otherwise  ; 0

 if  ; 
 = ),(

VX
VX

=D
M D       (53) 

If D = 3, we can define a function G(X,V) as follows: 

∏=




),(
otherwise  ; 0

 if  ; 3
 = ),( VXE

VX
VX

=
G            (54) 

If X and V are equal, only then we get G(X,V) = 3.  

From (53) and (54), we can write 

[ ] DM D .),( = ),( ∏ VXEVX     (55) 

We call MD(X,V) a minterm for quaternary algebra with 

output D. If we set D = 3, then from (55), M3(X,V) = G(X,V). 

In this derivation, both X and V are taken arbitrarily, so we 

can say that any minterm can be expressed with only the 

equality and AND operators which can generate a desired 

output value (1, 2 or 3) for a defined set of input values for a 

finite number of variables.                                                                                                  

Lemma 2: It is possible to implement any function using only 

equality, AND and OR operators. 

Let us implement a function of n input variables, the set of 

which is given by X. For each combination of inputs V, there 

is a minterm MD(X,V) with output value D. Since X can 

match with at most one input set V, only one minterm can 

produce a non-zero output value. Thus, using Lemma 1, we 

can express the function in the following form: 

[ ] [ ] [ ] 3. ),(2. ),(1. ),(

),(),( ),(=)(

32

332211

∑ ∏∑ ∏∑ ∏

∑∑∑
++=

++

VXEVXEVXE

VXVXVXX

1

MMMF

 

 

    (56) 

where V1 , V2 and V3 are sets of input combinations for 

which the minterms will produce outputs of 1, 2 and 3, 

respectively. For all other input combinations, the function 

returns 0 as an output. Eq. (56) defines an expression for 

sum-of-product (SOP) that can be used to implement 

arbitrary functions. We call it form-I of SOP. An example of 

form-I is given below by defining an arbitrary function - 

{ } { }
{ } { }
{ } { }








2,3,1,,for   ; 3

3,1,2,,for   ; 2

1,2,0,,for   ; 1

 = ),,(

=ZYX

=ZYX

=ZYX

ZYXF     (57) 

Therefore, according to (56), we can write F(X,Y,Z) as 

follows: 

F(X,Y,Z) = X
1
.Y

2
.Z

0
.1 + X

3
.Y

1
.Z

2
.2 + X

2
.Y

3
.Z

1
.3    (58) 

B. Development of Form-II of SOP 

From the definition of OR, we know 1 + 2 = 3. We can use it 

in (55) to decompose M3 in two components:  

[ ] [ ] 2).(1),( =.3),( = ),(3 +M ∏∏ VXEVXEVX   

),( + ),( = 21 VXVX MM       (59) 

Now, if we have k1 minterms with output 1, k2 minterms with 

output 2 and k3 minterms with output 3, then using the 

decomposition in (59), we can write 





 termsfor   ; 

 termsfor   ; 
 = 

322

311

k+kM

k+kM
M i      (60) 

Let us write Mi(X,V) and G(X,V) in packed-binary form: 
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i0i1i mm=M ,),( VX      (61) 

01 ,),( gg=G VX       (62) 

From (53)-(55), we get the following relation: 







2 ;   1,0.,

1 ;   0,1.,
.,=),(

01

01
01

=igg

=igg
=iggM i VX    (63) 

After simplification, M1 and M2 can be written as  

01 0,=),( gM VX    (64) 

,0=),( 12 gM VX    (65) 

Using bitswap on both sides of (65), 

12 0,=),(~ gM VX      (66) 

Since both g0 and g1 are dyadic functions, we have effectively 

converted M1 and M2 into binary equivalent functions. 

Now, both g0 and g1 are functions of n quaternary variables, 

which are equivalent to 2n binary variables written in packed-

binary form. In a quaternary SOP, we have multiple 

minterms; but all minterms will have the form of either M1 or 

M2. Using (64) and (66), we can get the binary equivalents of 

all such minterms and vice versa. Assuming all inputs and 

outputs to be in binary equivalents, we can use any binary 

SOP generation and minimization technique to get g0 and g1. 

Here, for demonstration, we use Karnaugh's mapping 

technique (K-map), but it is possible to use other techniques 

such as espresso heuristic logic minimizer. Once g0 and g1 are 

obtained, the rest of the process to get quaternary SOP is 

same regardless of the binary SOP generation technique.  

Let us separate the two constituent binary parts of the 

quaternary SOP as f1 and f0, where, 

f0 ≡ F . 1        (67) 

f1 ≡ ~ (F . 2) = ~ F . 1     (68) 

If we have k1 + k3 non-zero minterms for f0 and k2 + k3 non-

zero minterms for f1 from two different K-maps. Therefore, 

we can write: 

 terms +  ;   .1 3100 kk=fFF ∑≡= 0g     (69) 

 terms +  ;   .1~ 3211 kk=fFF ∑≡= 1g       (70) 

where g0 and g1 are vectors of binary minterms. Once f0 and f1 

are obtained, quaternary SOP function F can be written 

readily. 

0101 ,.1+.2~ ffFFF ≡=    (71) 

Eq. (71) results in a number of transformations that convert 

binary minterms directly into their quaternary counterparts, 

which are given in Table III. Here, X is any quaternary 

proposition and x0, x1 are its component bits that appear in 

binary SOP. Since the binary SOPs and their transformations 

in Table III contain only OR, AND, bitswap and NOT, we see 

that only these four operators are necessary and sufficient to 

describe any quaternary function. In Appendix A, we show 

how to obtain form-II of SOP for three different functions. 

Another important feature of form-II of SOP is that it can be 

used to directly convert a binary function into quaternary. If a 

binary system has 2m inputs and 2n outputs, these 2m inputs 

can be grouped as m quaternary inputs. Then we can directly 

convert the 2n binary outputs into n quaternary outputs.  

TABLE III.  TRANSFORMATION PAIRS FOR BINARY-TO-
QUATERNARY FORM-II SOP CONVERSION 

1.00 FFf =→  2.~ 11 FFf =→  

1 . 0 Xx ≡  2 . ~0 Xx ≡  

1 . 0 Xx ≡  2 . ~0 Xx ≡  

1 . ~1 Xx ≡  2 . 1 Xx ≡  

1 . ~1 Xx ≡  2 . 1 Xx ≡  

C. Similarity between MIN, MAX and AND, OR operators 

We can express MIN and MAX operators in form-II of SOP 

(please refer to Appendix A for derivation), as given below, 

).2.().1.~.~.~.~.(),( BA+AABB+BAB+A=BAMIN
 

     (72) 

).2+().1.~.~.~.(~),( BA+AB+BAB+BA+A=BAMAX
 

     (73) 

In (72) and (73), if we put any values of A and B except (A,B) 

= (1,2) or (2,1), then we find that, 

BA=BAMIN .),(     (74) 

BA=BAMAX +),(    (75) 

where, (A,B) ≠ (1,2), (2,1). Now, (74) and (75) are true for 

any finite number of inputs as long as the set of inputs do not 

contain both 1 and 2 simultaneously. According to (55), in 

form-I of SOP, each minterm MD is the AND of several 

E(X,V) and D literals. Since E(X,V) returns only 0 or 3 and 

the only literal that can have a value of 1 or 2 is D, there is no 

way both 1 and 2 can appear as inputs of an AND gate; thus 

MIN and AND are effectively equivalent for each minterm. 

Similarly, only one minterm remains non-zero at a time, so 

the OR stage may not have both 1 and 2 as inputs together, 

making OR and MAX functionally equivalent. Therefore, in 

case of form-I of SOP, AND and OR can be replaced by MIN 

and MAX functions, respectively. It should be noted that this 

argument is not valid for form-II of SOP.  

There are other examples where MIN(MAX) is equivalent to 

AND(OR), such as the design of decoder and multiplexer that 

will be discussed later. This is an important feature because 
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many of the existing quaternary logic schemes have MIN and 

MAX as operators and these operators have already been 

realized physically [16],[17]. 

V. COMPUTATION OF UPPER BOUND OF GATE COUNT 

AND GATE DEPTH FOR SOP EXPRESSIONS 

In this section we will compute the maximum number of 

gates and gate depth required to evaluate the SOP expressions 

of form-I or II for any arbitrary function. We assume the gates 

to be made of SWSFETs as described in [27]-[29] and base 

our calculations particularly on this technology. Each dyadic 

AND and OR gate consists of three SWSFETs in two levels, 

while each unary operation takes only one SWSFET. 

Equality, however, takes five SWSFETs spanned in two 

levels.  

The following two lemmas are derived to compute the gate 

count and gate depth of a multi-level AND or OR gate array 

(please refer to Appendix B for derivation). 

Lemma 3: If an AND (OR) gate may not take more than v 

inputs, then it is possible to compute the AND (OR) of n 

propositions using exactly 
1

1









−

−

v

n
gates. 

Lemma 4: If an AND (OR) gate may not take more than v 

inputs, then it is possible to compute the AND (OR) of n 

propositions within  log nv  depth of operators. 

A. Computation of upper bound of gate count and gate 

depth for form-I of SOP  

For form-I of SOP, any minterm that produces a non-zero 

output is represented with literals consisting of equality 

operators. Suppose we have a function with n arguments. So, 

the truth table of this function has 4
n
 rows. If the truth table of 

the function is expressed as a two dimensional map (different 

from K-map) as shown in Table IV for n = 2, the worst case 

is observed if no two columns or two rows are identical and 

the function never gives an output of 3 or 0. 

TABLE IV.  WORST CASE TRUTH TABLE OF FORM-I OF SOP 

                A   

  B 

0 1 2 3 

0 2 1 2 1 

1 1 2 1 2 

2 2 1 1 2 

3 1 2 2 1 

 

Since there are n inputs and each of them may be equal to 0, 

1, 2 or 3; there are at most 4n equality operations in parallel to 

calculate all these literals. Then, there are 4
n
 minterms, each 

containing n literals and a constant value for that minterm 

output. Starting with these literals, each minterm takes N1 

gates spanned in d1 gate levels as given below (from Lemma 

3 and 4)-  

( ) 1log
11 +n=d v   ,      













− 11
1

v

n
=N     (76) 

Here, v1 is the maximum number of inputs to an AND gate. 

There are 4
n
 minterms calculated in parallel, each requiring N1 

number of gates.  

The OR of these 4
n
 minterms are calculated using N2 gates 

and spanned in d2 gate levels as given below - 

 4log
22

n
v=d   ,     















−

−

1

14

2
2

v
=N

n

    (77) 

Here, v2 is the maximum number of inputs to an OR gate. 

Now, each literal is the output of an equality operation, which 

is assumed to take N0 number of gates spanned in d0 number 

of gate levels. So the total number of gates is calculated as - 















−

−













− 1

14

1
44

21
0

v
+

v

n
+nN=N

n
n    (78) 

The maximum gate depth is calculated as - 

( )   4log1log
210

n
vv ++n+d=d     (79) 

Considering SWSFET technology, we get the following 

transistor count and depth for v1 = v2 = 2, 

( )( )114320 −+n+n=N n
T    (80) 

( ) ( )n++n+=dT 21log22 2    (81) 

B. Computation of upper bound of gate count and gate 

depth for form-II of SOP  

We need the literals X, X , ~X and X~  to write form-II of 

SOP for any function, where X is an argument of the function. 

A literal along with its NOT never appear in the same 

minterm; and only one of ~X or X~ can co-exist with X or X  

in the same minterm. So we need at most two of the four 

propositions involving X as mentioned above. Therefore, we 

can conclude that if a function consists of n arguments, there 

may be at most 2n propositions in a single minterm. So if we 

consider that the maximum number of propositions of a single 

AND gate is v1, we can conclude from Lemma 3 and 4 that 

the maximum number of gates and maximum gate depth for 

any minterm will be given by - 

 2log
11 n=d v    ,     

1

12

1
1 









−

−

v

n
=N  (82) 
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TABLE V.  K-MAP FOR WORST CASE OF  F1 OR F0 

            01,aa      

01,bb    

0,0 0,1 1,1 1,0 

0,0 0 1 0 1 

0,1 1 0 1 0 

1,1 0 1 0 1 

1,0 1 0 1 0 

To calculate the upper bound of gate count and gate depth, we 

need to consider the worst case for f1 and f0, each of which has 

the checkerboard formation of 1’s and 0’s like the one shown 

in Table V. This is definitely the worst case because if we 

convert any 1 to 0 or any 0 to 1, then either the number of 

minterms or number of propositions in a single minterm or 

both will reduce.  

If the worst case occurs, half of the entries of the K-map must 

be 1. There are 2
2n

 entries in a binary K-map for n quaternary 

propositions. Therefore, K-map for f1 or f0 may have at most 

2
2n-1

 non-zero entries which is theoretically the maximum 

number of minterms. Now, if we limit the number of 

propositions of OR gate to be v2, the maximum depth and 

maximum number of gates for the OR operation for either F1 

or F0 are found to be- 

 2log 12

22
−n

v=d   ,  
1

12

2

12

2












−

−−

v
=N

n

   (83) 

The computation of f1 and f0 can be done in parallel and the 

depths are same for both f1 and f0 in the worst case. If the gate 

depth required to calculate all literals (except X itself) X , ~X 

and X~  is given by d0 and the total depth is given by d, then  

    22log2log 12

210 ++n+d=d n
vv

−    (84) 

Here 2 is added for the computation of .1+.2~ 01 FF , the 

bitswap operation shown here is distributed over the literals 

like the transformations in Table IV and thus this is not 

counted separately.  

Since we need different gates for the computation of f1 and f0 

in parallel, we need AND gates for at most 4
n
 minterms and 

OR gates for both F0 and F1. Therefore, if the number of gates 

required to calculate all literals except X itself is given by N0 

and the total number of gates is given by N, then - 

324 210 +N+N+N=N n    (85) 

Here, 3 is added to account for the AND and OR gates needed 

to compute .1+.2~ 01 FF . We can also calculate N0 as 3n, 

since each argument has three literals to be calculated apart 

from X itself. Therefore, the final expression for total number 

of gates is -  

3
1

12
2

1

12
43

2

12

1

+
v

+
v

n
+n=N

n
n















−

−













−

− −

   (86) 

Considering SWSFET technology, we get the following 

transistor count and depth for v1 = v2 = 2, 

( )123 12 ++ n+n=N n
T    (87) 

 ( )122log21 2 +n+n+=dT    (88) 

A. Salient features of form-I and form-II of SOP  
Since the two forms of SOP are derived in different ways, it is 

often difficult to tell beforehand which form is more efficient. 

However, there are certain applications that favor one form 

over another. The design of many logic circuits that rely on a 

look-up table-like working principle, such as a multiplexer 

and any other circuit based on it, becomes very straight-

forward and efficient if form-I of SOP is utilized (refer to 

Section VI). This is also true normally for functions with 

many inputs where the number of minterms is small 

compared to the number of variables and those terms are 

located sparsely in the truth table. Form-I of SOP also exists 

in literature in various analogous forms, having various 

design and implementation techniques already been 

developed for it [17].  

However, the biggest advantage of form-II of SOP is the 

flexibility it brings in designing large and complex logic 

functions. Any binary logic simplification technique can be 

used with it and it allows direct transformation of binary logic 

circuits in quaternary. Also, form-II of SOP is subject to more 

optimization techniques than form-I as discussed in [25]. Not 

only that, methodological design of tree-based logic circuits 

such as fast adders, comparators and encoders becomes much 

simpler of a problem if we start with form-II of SOP 

[21],[22],[26]. Finally, if a large binary system is to be 

converted into a quaternary system by replacing the internal 

circuitry of the system, while putting binary-to-quaternary 

encoders and quaternary-to-binary decoders on input and 

output sides of the system respectively, then form-II of SOP 

would more likely be a reasonable choice due to its close 

relation with binary SOP expressions. 

VI. DESIGN OF SOME IMPORTANT COMBINATIONAL 

QUATERNARY CIRCUITS  

Combinational circuits are the vital elements for any digital 

system. Our proposed quaternary operators can be employed 

efficiently to design many common combinational circuits 

[20]-[26]. We generalize some of them here using the form-II 

of SOP. 
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A quaternary 1-to-4 decoder (Fig. 2a, Table VI) has one input 

S and four outputs, defined by the array L. Only one of the 

outputs can be equal to 3 at a time, all other outputs remain 0. 

The outputs are defined by the following equation - 

3 2, 1, 0,  ;   ][ =iS=i iL     (89) 

In general, for n-to-4
n
 line decoder, we have n input lines 

given by the array, S =  {S1, S2, …., Sn}. The array V denotes 

each of 4
n
 possible combinations of inputs. The state of any 

output line is denoted by- 

∏ ),(][ jVSEL =j    (90) 

A 1-to-4 demultiplexer (Fig. 2b, Table VI) is same as 1-to-4 

decoder, but the output passes an additional data input D 

through one of the output lines set by the selector input S. The 

outputs of the 1-to-4 and n-to-4
n
 demultiplexers are expressed 

by the following equations - 

3 2, 1, 0, ; .][ =iSD=i iL     (91) 

∏ ),(.][ jVSEL D=j
   (92) 

    
(a)  

                                                             

  
 (b) 

 

 
(c)  

Figure 2.  Quaternary 4-line (a) decoder, (b) demultiplexer and (c) 

multiplexer. 

TABLE VI.  TRUTH TABLES OF QUATERNARY 1-TO-4 

DECODER, DEMULTIPLEXER AND 4-TO-1 MULTIPLEXER 

S Decoder output 

(L) 

Demultiplexer 

output (L) 

Multiplexer 

output 

(F) 
[0] [1] [2] [3] [0] [1] [2] [3] 

0 3 0 0 0 D 0 0 0 D0 

1 0 3 0 0 0 D 0 0 D1 

2 0 0 3 0 0 0 D 0 D2 

3 0 0 0 3 0 0 0 D D3 

 

A multiplexer can be constructed using a decoder. There are 

as many data inputs as the outputs of the decoder and each 

output is a minterm involving the decoder output and the 

corresponding data input (product of decoder output L and 

data input D). The OR of all such minterms give the output of 

the multiplexer, expressed as a SOP of form-II. If there are n 

selectors and 4
n 

data inputs, then the multiplexer output is 

given by - 

( ) ( )∑ ∏∑
−

=

−

=

14

0

14

0

),(.][][.][

nn

jj

j=jj=M jVSEDLD    (93) 

For n = 1 (Fig. 2c, Table VI), 

( ) 3 2, 1, 0,  ;    .][ =iSi=M i∑ D    (94) 

VII. COMPARISON WITH EXISTING LOGIC SYSTEMS  

In this section we present the comparison between the 

proposed algebra and some other existing variants of 

quaternary logic. Here we would like to make the comparison 

in both gate level and transistor-level, but direct transistor 

level comparison is not possible because no other version of 

quaternary logic has been implemented using SWSFET, a 

technology fully compatible with the proposed logic. 

Gate/transistor count, however, is a relative measure of 

complexity associated with the design of logic circuits. Since 

a comparison with SWSFET devices with similar binary 

FETs is presented in [27], we will present a transistor-level 

comparison in our comparison with binary logic system based 

on that.  

Khan et al. used quaternary shift gates (QSG) and 2-digit 

quaternary controlled shift gates (QCSG) or Muthukrishnan-

Stroud (M-S) gates to show the realization of several higher 

level gates like Feynman gates and Toffoli gates 

[9],[12],[32],[33]. Using these gates, quaternary decoder, 

multiplexer and demultiplexer were designed. In the context 

of quantum logic, qudit means quantum digit.  

To implement 2-to-16 decoder with active-1 output, Khan [9] 

used 16 of 3-digit QCSGs and 20 of QSGs. Since each 3-digit 

QCSG required 5 of 2-digit QCSGs, this design took 80 of 2-
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digit QCSGs and 20 of QSGs. For both 16-to-1 multiplexer 

and 2-to-16 demultiplexer, they used 16 of 3-input Toffoli 

gates in addition to their 2-to-16 decoder circuit proposed in 

the same work.  

Another design of 2-to-16 decoder circuit was given by Khan 

[12], where QSGs and 3-qudit modified M-S gates were used, 

16 of each type. Each modified M-S gate individually 

required 5 of 2-qudit M-S gates and 4 QSGs. 1-to-4 

demultiplexer and 4-to-1 multiplexer were also designed, 

each with 4 of 3-input Toffoli gates, 8 M-S gates and 4 QSGs. 

A 3-input Toffoli gate was realized using 13 of M-S gates and 

14 of QSGs.   

The above results from the literature are listed in Table VII 

along with the gate/SWSFET counts for the same devices 

using the proposed logic. Although a direct comparison is not 

possible in terms of the gate count, significant reduction in 

design complexity is readily evident from the results of the 

present work. 

TABLE VII.  COMPARISON OF THE PROPOSED LOGIC WITH OTHER QUATERNARY VARIANTS 

Device Gate Count (Literature) Gate/SWSFET Count (Current Work) 

2-to-16 

decoder 

16x 3-digit QCSGs, 20x QSGs  [9] 

equivalent: 80x 2-digit QCSGs, 20x QSGs 

8x unary equalities, 16x 2-input AND 

equivalent: 8 + 48 (= 56) SWSFETs 

2-to-16 

decoder 

16x QSGs, 16x 3-digit modified M-S [12] 

equivalent: 80x QSGs, 80x M-S 

8x unary equalities, 16x 2-input AND 

equivalent: 8 + 48 (= 56) SWSFETs 

2-to-16 

demux 

16x 3-digit QCSGs, 20x QSGs, 16x 3-input Toffoli  [9] 

equivalent: 80x 2-digit QCSGs, 244x QSGs, 208x M-S 

8x unary equalities, 32x 2-input AND 

equivalent: 8 + 96 (= 104) SWSFETs 

16-to-1 

mux 

16x 3-digit QCSGs, 20x QSGs, 16x 3-input Toffoli  [9] 

equivalent: 80x 2-digit QCSGs, 244x QSGs, 208x M-S 

8x unary equalities, 32x 2-input AND, 15x 2-input OR 

equivalent: 8 + 96 + 45 (= 149) SWSFETs 

1-to-4 

demux 

8x 2-digit M-S, 4x QSGs, 4x 3-input Toffoli  [12] 

equivalent: 60x QSGs, 60x 2-digit M-S 

4x unary equalities, 4x 2-input AND 

equivalent: 4 + 12 (= 16) SWSFETs 

4-to-1 

mux 

8x 2-digit M-S, 4x QSGs, 4x 3-input Toffoli  [12] 

equivalent: 60x QSGs, 60x 2-digit M-S 

4x unary equalities, 4x 2-input AND, 3x 2-input OR 

equivalent: 4 + 12 + 9 (= 25) SWSFETs 

 

TABLE VIII.  COMPARISON OF THE PROPOSED LOGIC WITH BINARY LOGIC 

Binary Device Gate Count in Binary Logic Quaternary Gate/SWSFET Count in Current Work 

2-to-4 decoder 
4x NOR, 2x NOT 

CMOS equivalent: 16 + 4 (= 20) FETs 

4x unary equalities 

equivalent: 4 SWSFETs 

Dual 2-to-4 

demux 

4x NAND, 8x NOR, 3x NOT 

CMOS equivalent: 16 + 32 + 6 (= 54) FETs 

4x unary equalities, 4x 2-input AND 

equivalent: 4 + 12 (= 16) SWSFETs 

4-to-16 

decoder 

8x NAND, 16x NOR, 4x NOT 

CMOS equivalent: 32 + 64 + 4 (= 100) FETs 

8x unary equalities, 16x 2-input AND 

equivalent: 8 + 48 (= 56) SWSFETs 

Dual 

4-to-1 mux 

8x NAND, 10x NOR, 4x NOT 

CMOS equivalent: 32 + 40 + 8 (= 80) FETs 

4x unary equalities, 4x 2-input AND, 3x 2-input OR 

equivalent: 4 + 12 + 9 (= 25) SWSFETs 

 

 

In Table VIII, we compare some binary logic blocks with 

their quaternary counterparts. Here binary devices are 

assumed to be implemented using CMOS gates which share 

the same or similar technology as the SWSFETs. 

NAND/NOR gates are restricted to 2-inputs only and number 

of inputs/outputs are taken to be an exponent of 2, to avoid 

redundancy in quaternary implementation. This is why 

demultiplexer and multiplexer are assumed to have dual data 

lines to match the quaternary equivalent. For quaternary 

implementation, it is assumed that all inputs and outputs are 

available in quaternary so that no encoder/decoder is 

necessary. It was claimed in [27]-[29] that up to 75% 

reduction in transistor count and up to 50% reduction in data 

interconnect densities could be achieved with reduced power 

dissipation and gate delay, if quaternary logic with SWSFET 

technology could be used instead of CMOS binary logic. 

Table VIII is in good agreement with the claim about the 

transistor count, as the reduction in transistor count is 

observed in between 44% and 80%.     

VIII. CONCLUSION 

In this paper, we have presented a novel quaternary algebra 

which serves as a bridge between the well-developed binary 

logic and the emerging quaternary logic. The algebra aids in 

transforming any binary function into its quaternary version 
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and allows the quaternary functions to be simplified and 

manipulated using the simplifying techniques of the binary 

logic. It also includes operators that are commonly found in 

other existing quaternary logic variants, and thus is capable of 

handling logical expressions derived in other existing 

quaternary logic systems. Besides, using the unique properties 

of the operators defined in this logic, we have established two 

methods to express any quaternary function as a sum-of-

products (SOP) expression, one of them being completely 

unique to the proposed logic. We have presented the 

theoretical analyses of both forms of SOPs and discussed their 

unique applications. Finally several simple logic circuits have 

been presented and based on them, a comparative study of the 

proposed logic with binary and other quaternary logic systems 

have been made.  
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APPENDIX A 

Logical synthesis of equality operator 
The truth table of E(A,B) can be written in the matrix form 

as shown in Table A-I.    

The above results from the literature are listed in Table VII 

along with the gate/SWSFET counts for the same devices 

using the proposed logic. Although a direct comparison is not 

possible in terms of the gate count, significant reduction in 

design complexity is readily evident from the results of the 

present work. 

TABLE A-I : TRUTH TABLE OF E(A,B) 

             B 

A          

0 1 2 3 

0 3 0 0 0 

1 0 3 0 0 

2 0 0 3 0 

3 0 0 0 3 

 

The binary truth tables for e0(a0,a1,b0,b1) and e1(a0,a1,b0,b1) 

are identical, having 1’s at the locations where E(A,B) has 3’s.  

The binary functions are thus identical as well and can be 

written as – 

( ) ( ) 10101010110100 ...,,,,,, bbaabbaaebbaae ==
 

101010101010 ......... bbaabbaabbaa +++
  (A-1) 

From (A-1), we calculate E(A,B) - 

( ) BBAABBAABBAABAE .~..~.~..~.~..~, ++=

BBAA .~..~+
   (A-2) 

Now, we can manipulate E(A,B) further to get a more 

compact expression. 

( ) ( ) ( )BABABABABABABAE ...~.~...~.~, +++=

( ) ( )BABABABA ~.~~.~... ++=    (A-3) 

Thus, we get two equivalent expressions - 

)(~.)(),( BABABAE ⊕⊕=    (A-4) 

)(~)(),( BABABAE ⊕+⊕=    (A-5) 

Here, instead of using just AND, OR, NOT and bitswap, we 

used XOR/XNOR operators. In this way, the functional 

operators can be used to reduce SOP expressions of form-II.  

 Logical synthesis of MIN and MAX operator 
We will express two functional operators MIN(A, B) and 

MAX(A, B) in form-II of SOP where A and B are two 

quaternary propositions. Let us first implement MIN(A, B). 

The truth table of the function is shown in Table A-II. 
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TABLE A-II : TRUTH TABLE OF QUATERNARY MIN FUNCTION 

                A 

  B 

0 1 3 2 

0 0 0 0 0 

1 0 1 1 1 

3 0 1 3 2 

2 0 1 2 2 

 

Now, we consider the cells which contain 1 or 3 as true for 

min0. Similarly, we consider the cells which contain 2 or 3 as 

true for min1. The remaining cells will contain 0. The K-map 

for min0 is given in Table A-III. 

TABLE A-III : K-MAP FOR MIN0 FUNCTION 

            01,aa      

01,bb  

0,0 0,1 1,1 1,0 

0,0 0 0 0 0 

0,1 0 1 1 1 

1,1 0 1 1 0 

1,0 0 1 0 0 

 

From the K-map given above, we can write the following 

expressions:                                                

0110110001010 .....),,,( aab+bba+ba=bbaamin   (A-6) 

).1.~.~.~.~.(),(0 AABB+BAB+A=BAMIN   (A-7) 

Now, the K-map for min1 is given in Table A-IV. 

TABLE A-IV : K-MAP FOR MIN1 FUNCTION 

            01,aa  

01,bb          

0,0 0,1 1,1 1,0 

0,0 0 0 0 0 

0,1 0 0 0 0 

1,1 0 0 1 1 

1,0 0 0 1 1 

 

From the K-map we can get the following expression: 

1101011 .),,,( ba=bbaamin   (A-8) 

2.).(),(1 BA=BAMIN   (A-9) 

Now, we can combine (A-7) and (A-9) to get the complete 

function: 

 ).2.().1.~.~.~.~.(),( BA+AABB+BAB+A=BAMIN  

   (A-10) 

Similarly, we can derive MAX1(A, B) and MAX0(A, B) from 

Table A-V. 

TABLE A-V : TRUTH TABLE OF QUATERNARY MAX 

FUNCTION 

                 A 

  B 

0 1 3 2 

0 0 1 3 2 

1 1 1 3 2 

3 3 3 3 3 

2 2 2 3 2 

Using the same technique described for MIN(A, B), we can 

write the following expressions: 

0101010101010 ....),,,( ab+ba+bb+aa=bbaamax   (A-11) 

).1.~.~.~.(~),(0 AB+BAB+BA+A=BAMAX  (A-12) 

1101011 +),,,( ba=bbaamax   (A-13) 

).2+(),(1 BA=BAMAX   (A-14) 

Now, we can combine (A-12) and (A-14) to get the complete 

function: 

).2+().1.~.~.~.(~),( BA+AB+BAB+BA+A=BAMAX        

   (A-15) 

 

APPENDIX B 

 

Lemma 3: If an AND (OR) gate may not take more than v 

inputs, then it is possible to compute the AND (OR) of n 

propositions using exactly 
1

1









−

−

v

n
gates. 

Proof: Suppose, there are n propositions and we want to 

calculate the AND of them, where the maximum number of 

inputs to an AND gate is v. If n > v, we will need more than 

one gates to perform the computation. Now, the number of 

gates is minimized if at most one gate is allowed to have less 

than v inputs. To minimize delay, the inputs are divided into 

groups and processed in parallel AND gates. If there are x0 

number of gates each processing exactly v number of such 

propositions, then - 

n=r+xv 00     (B-1) 

where, 










v

n
=x0    ,   








−

v

n
vn=r0    (B-2) 

These x0 gates have x0 outputs and also there are r0 

propositions left if n is not absolutely divisible by v. So at the 
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second level, there are x0 + r0 propositions. If this level has x1 

gates and r1 remaining propositions, then - 

 0110 rr+xv=x −
    (B-3) 

Generalizing for higher levels, we get the following for the m-

th level,  

1-mmm1-m rr+xv=x −
     (B-4) 

Now, if (m+1)-th level is the last level, then it must have only 

one gate so that the single output gives the AND of all n 

propositions. Let us assume that the last gate may have fewer 

than v propositions and the number of unused inputs is δ < v. 

Therefore we get the following equation- 

mm rδv=x −−
   (B-5) 

Summing the equations for all the stages between x0 and xm 

using (B-3) and (B-5), we get the following equation - 

0

m

1=i
i

m

0=i
i rδv+xv=x −−∑∑

   (B-6) 

This can be simplified to the following form- 

11

00
m

1=i
i

−









−−









=
−

−
∑

v

v

n
vn+δ+v

v

n

v

r+δ+vx
=x   (B-7) 

So, the total number of gates is - 

1

1

1
m

1=i
i0

−

−







−









∑
v

v

n
vn+δ+

v

n
v

=x+x+=N     (B-8) 

After simplification, 

11

1

−−

−

v

δ
+

v

n
=N       (B-9) 

The quantity δ is used to account for the unused inputs to the 

final gate, so that N becomes an integer. Therefore, N can be 

expressed as - 










−

−

1

1

v

n
=N     (B-10) 

Although we assumed so far that the δ unused inputs might 

only exist at the final stage, but it was done only for the sake 

of simplicity. Even if other stages had unused input capacity, 

(B-10) would still hold, given that the total number of such 

unused inputs did not differ from δ.                                                                                                                                                        

 

Lemma 4: If an AND (OR) gate may not take more than v 

inputs, then it is possible to compute the AND (OR) of n 

propositions within  log nv  depth of operators. 

 
Proof: The proof continues from the proof of Lemma 3. If n 

= v
k
 for any positive integer k, then after each level, the 

number of propositions to be calculated at the next level is 

reduced by a factor of v. Now, if gate depth is denoted by d, 

we get the following result for n = v
k
, 

k=d    (B-11) 

If n = v
k+1

, then we have - 

1+k=d    (B-12) 

The results for n = v
k
 and n = v

k+1
 can be summarized for gate 

depth d by the following equation- 

 log n=d v   (B-13) 

Now, if d lies between k and k+1, i.e. v
k
 < n < v

k+1
, then we 

can express n as a polynomial of v as given below - 

0
1

1-kk ..... a++va+va=n kk −   (B-14) 

where { }1.0,1,2,....i −∈ v,a  and at least two of all ai including 

ak must be non-zero. 

This means the n propositions are grouped in several sub-

groups so that the number of propositions in each sub-group 

is equal to a non-zero term of (B-14); these sub-groups are 

processed in parallel. The group having lower number of 

propositions (corresponding to a lower order term) is 

processed in fewer stages and the final output is then merged 

with a larger group. Since there are v – ai  ≥ 1 unused inputs at 

any (i+1)-th level, this single proposition does not increase 

the number of gate levels associated with that term. 

This argument holds for all terms up to the highest order term 

and it is always possible to calculate the AND of n 

propositions in (B-14) to be calculated within k+1 gate levels. 

Which is also true for n = v
k+1

. 

Considering the three cases of n = v
k
, n = v

k+1
 and v

k
 < n < v

k+1
 

for arbitrary v and k, we conclude that the gate depth d can be 

given by the following formula - 

 log n=d v       (B-15) 

 


