

 © 2016, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-5 E-ISSN: 2347-2693

Facile Algebraic Representation of a Novel Quaternary Logic

Ifat Jahangir
1*

, Anindya Das
2
, Masud Hasan

3

1
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208

2
Department of Computer Science, Iowa State University, Ames, IA 50010

3
Department of Computer Science, Taibah University, Madinah Munawarah, Saudi Arabia 41411

*Corresponding author, email: ifat00@gmail.com

Available online at: www.ijcseonline.org

Received: Apr/21/2016 Revised: May/04/2016 Accepted: May/18/2016 Published: May/31/2016

Abstract— In this work, a novel quaternary algebra has been proposed that can be used to implement an arbitrary quaternary logic

function in more than one systematic ways. The proposed logic has evolved from and is closely related to the Boolean algebra for

binary domain; yet it does not lack the benefits of a higher-radix system. It offers seamless integration of the binary logic functions

and expressions through a set of transforms and allows any binary logic simplification technique to be applied in quaternary domain.

Since physical realization of the operators defined in this logic has recently been reported, it has become very important to have a

well-defined algebra that will facilitate the algebraic manipulation of the novel quaternary logic and aid in designing various complex

logic circuits. Therefore, based on our earlier works, here we describe the complete algebraic representation of this logic for the first

time. The efficacy of the logic has been shown by designing and comparing several common logic circuits with existing designs in

both binary and quaternary domain.

Keywords- Propositional Logic, Quaternary algebra, Quaternary Transformation, Sum-of-products

I. INTRODUCTION

For many years digital devices have been designed using

binary logic. Even today, the latest computing systems are

designed and developed using only the binary logic. Since

multi-valued logic enables more information to be packed in a

single digit, researchers have been working on multi-valued

logic for many years [1]-[18]. With the development of novel

electronic and optical devices, it is now possible to implement

circuits for more complicated logic systems [4]-[8]. Many of

these devices are capable of dealing with more than two logic

states, so their efficiency could be utilized if we use multi-

valued logic for digital circuits. Some multi-valued logic

systems such as ternary and quaternary logic schemes have

been developed and they have been being experimented for a

long time [1]. These logic systems are derived as

propositional or quantum logic [1],[9].

Quaternary logic has several advantages over binary logic.

Since it requires half the number of digits to store any

information than its binary equivalent, it is good for storage;

given that the quaternary storage mechanism is less than twice

as complex as the binary system. For the same reason,

quaternary devices require simpler parallel circuits to process

same amount of data than that needed in binary logic devices.

Inspired by such advantages, many researchers proposed

different variants of quaternary logic in the past decades,

demonstrated theoretically and experimentally [9]-[19].

Although there are numerous references on quaternary logic

in the literature, we introduced yet another new and unique

variant of quaternary logic for the first time in our earlier

works [20]-[26]. This logic offers all the benefits of a higher

radix system, yet can readily take advantage of existing

binary circuit designs and design optimization rules which

were developed over many decades of relentless effort by

countless researchers. The simplicity and easy scalability of

the common logic circuits offered by the new logic was

evident in our earlier reports, where we presented the design

of several types of adders, comparators, encoders and

decoders [21]-[26]. As a matter of fact, it is possible to

implement any quaternary function in two types of sum-of-

products (SOP) expressions, one of them is only possible

using the proposed quaternary logic. This SOP expression

integrates existing designs and design methodologies in a

systematic way, which can be optimized further through

algebraic manipulation [25]. The novelty of this logic has

drawn attention of many researchers working in the field of

quaternary logic and as a result, very recently, there have

been several reports on physical realization of this logic [27]-

[30]. None of these works discuss the prospects and

completeness of this logic as an extension of Boolean algebra,

neither do we see a set of rules to facilitate the design of

arbitrary functions that would meet the growing need of a

general-purpose higher-radix logic system. Therefore, based

on our earlier works, here we describe the complete algebraic

representation of this logic for the first time. We use the

electronic realization scheme demonstrated in [27]-[29] to

calculate some physical parameters such as transistor count

and gate depth in a logic circuit.

In our present work, we start our discussion in Section II with

a formal description of the quaternary logic, including the

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 2

definition and classification of the operators. Here we also

briefly discuss the physical realization of the logic gates. In

Section III, the fundamental properties of quaternary algebra

and its operators are presented along with some important

theorems. Then we present the method of expressing arbitrary

quaternary functions in Section IV where two different

representations of sum-of-products (SOP) expressions are

shown. Section V is dedicated to the computation of

theoretical upper bounds of gate count and gate depth for both

forms of SOP discussed in Section IV. In Section VI, design

of several combinational logic blocks such as multiplexer,

decoder and demultiplexer are shown using the proposed

quaternary algebra. Based on these designs, we present a

comparative analysis of the different variants of quaternary

logic in Section VII.

II. QUATERNARY ALGEBRA

Quaternary algebra is defined as a set of operators and a set of

values {0, 1, 2, 3} for any valid proposition. Quaternary digits

{0, 1, 2, 3} can be imagined as 2-bit binary equivalents 00,

01, 10, 11. A single quaternary digit is called a qudit when it

is expressed as a number. If the bits of the binary equivalent

of a qudit interchange their positions and still the quaternary

state remains unchanged, then it is said to have binary

symmetry; otherwise it is asymmetrical. It should be noted

that quaternary states 0 and 3 are symmetrical, while 1 and 2

are asymmetrical.

A. Classification of quaternary operators

There are several operators in the proposed quaternary

algebra which are sufficient to describe any quaternary

function. We classify these operators in two classes.

a) Fundamental Operators:

Fundamental operators are those selected operators that are

sufficient to completely define the quaternary algebra and can

be used to derive other operators.

b) Functional operators:

The functional operators are those operators that can be

expressed by a combination of two or more fundamental

operators.

TABLE I. CLASSIFICATION OF QUATERNARY OPERATORS

Quaternary Operators

Fundamental Operators Functional Operators

AND, OR, NOT, Bitswap Inward Inverter,

Outward Inverter,

Equality, MIN, MAX,

XOR

It will be shown later that functional operators can also be

used to express any arbitrary quaternary function; the reason

behind this classification lies in our consideration of

generality and flexibility. In subsection III-C, we will show

three sets of operators, comprising both fundamental and

functional operators, each set being sufficient for expressing

any arbitrary quaternary function. This redundancy is allowed

in the logic system for practical purposes - each set offers

certain distinct benefits when it comes to physical realization,

yet all of them are connected through various laws of the

algebra. Therefore, the operators offering the most flexible

and wide range of applications are chosen as fundamental

operators, and the rest are defined as their derivatives

(functional operators). This will be discussed in more details

in subsequent sections.

B. Definition of quaternary operators

A quaternary digit can be expressed by two binary digits

packed together using the following notion -

()
100101 2, aaaaA +×≡= (1)

where a1 and a0 are the constituent bits of the quaternary digit

A and the right side of (1) denotes the magnitude of A in

decimal system. In general, the fundamental dyadic operators

work like bitwise binary operators if the above notion is

adopted,

),,,(),(0101 bbaaF=BAF),(,),(0011 bafbaf=

 (2)

where F and f stands for similar quaternary and binary

operators respectively. The above notation of expressing

quaternary digits (operators) in terms of binary digits

(operators) is called packed-binary representation of

quaternary digits (operators).

The mathematical symbols and truth tables of all operators are

shown in Table II. In Table II, some monadic/unary operators

have different symbols from our earlier works [20]-[24] to

improve readability and facilitate type-setting; the symbol of

outward inverter Â is changed to !A and the overhead symbol

of bitswap A
~

 is changed to ~A.

Bitswap is the only fundamental operator that does not have

any binary equivalent and is unique in this algebra (first

presented in [24]); it swaps the two bits of the binary

equivalent of the quaternary operand. It leaves the

symmetrical numbers unchanged but inverts (i.e. NOT) the

asymmetrical numbers, so this operator can also be defined in

the following way-





symmetric ;

asymmetric ;
~ Bitswap,Binary

aa

aa
=a (3)

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 3

Using packed-binary representation, the NOT operator can be

expressed in the following way -

0101 , , aa=aa=A (4)

On the other hand, bitswap can be expressed as

1001 , ,~~ aa=aa=A (5)

When the bitswap operator follows another operator, we get a

compound form of operators that may be realizable directly

depending on the technology. Some examples are bitswap

AND (AND followed by bitswap), bitswap NOR (NOR

followed by bitswap), bitswap XNOR (XNOR followed by

bitswap), etc. In the bitswap NAND, NOR, NOT and XNOR,

the inverter is obviously “NOT”, not the inward or outward

inverter. However, if an outward or inward inverter follows

another operator, that is clearly mentioned, such as outward

AND, inward XOR, etc. Fig. 1 shows the circuit symbols of

all the fundamental and functional operators.

Figure 1. Circuit symbols of quaternary operators: (a) AND, (b) OR, (c)

NOT, (d) Bitswap, (e) XOR, (f) Inward Inverter, (g) Outward Inverter, (h)

Equality, (i) MIN, (j) MAX.

TABLE II. MATHEMATICAL SYMBOLS AND TRUTH TABLES

OF QUATERNARY OPERATORS
†

Operands A 0 0 0 0 1 1 1 2 2 3

B 0 1 2 3 1 2 3 2 3 3

NOT A 3 3 3 3 2 2 2 1 1 0

Outward

inverter
A! 3 3 3 3 3 3 3 0 0 0

Bitswap A~ 0 0 0 0 2 2 2 1 1 3

Inward

inverter
A′ 2 2 2 2 2 2 2 1 1 1

AND BA ⋅ 0 0 0 0 1 0 1 2 2 3

OR BA + 0 1 2 3 1 3 3 2 3 3

XOR BA ⊕ 0 1 2 3 0 3 2 0 1 0

Equality
‡
 ()BAE , 3 0 0 0 3 0 0 3 0 3

MIN BA ⋅ 0 0 0 0 1 1 1 2 2 3

MAX BA + 0 1 2 3 1 2 3 2 3 3
‡ Alternative symbol for equality used primarily in SOP expressions, AB = BA

= E(A , B).

† All dyadic operators are commutative with F(A,B) = F(B,A). So identical

pairs of (A,B) are mentioned only once by showing 10 out of 16 possible

combinations.

The equality operator is defined as -

() ()


 ≠

B=A

BA
=B=A=ABE=BAE

AB

;3

;0
,, (6)

Using packed-binary representation, the functional inverters

can be expressed as

1101 , ,!! aa=aa=A (7)

1101 , , aa='aa=A'

(8)

C. Required Sets of Operators and Their Physical

Realization

There are three sets of operators in the proposed algebra, each

of which is sufficient to express any quaternary function

algebraically. These sets are listed below –

(1) AND, OR, NOT, bitswap

(2) AND, OR, equality

(3) MIN, MAX, equality

From the above list, the first two sets are used in form-II and

form-I of sum-of-products (SOP) expressions respectively,

which will be discussed in Section IV. The third set can also

be used as an alternative representation of form-I of SOP as

shown in [17], this depends on the choice of physical

realization. Besides, MIN and MAX functions can be more

efficient in sequential circuits if we compare the design in

[17] with the ones in [20]. However, MIN (MAX) and AND

(OR) are equivalent in the physical realization scheme

assumed in this work, making them interchangeable if

needed.

Another important reason for preferring the first set over the

others is the fact that all operators in the first set have various

properties that facilitate algebraic manipulation and

simplification. De Morgan’s law for the NOT operator, the

distributive property of bitswap operator are two examples

that are used widely to simplify many complex expressions.

On the other hand, the equality operator is rather less flexible

and we will show later that expressions containing the

equality operator are often broken down in terms of the

operators listed in the first set to facilitate simplification.

Besides, the use of NOT and bitswap enables us to utilize the

axioms of Boolean algebra and many existing techniques of

binary logic design in the quaternary domain. For these

reasons, the operators in the first set are chosen to be the

fundamental operators and all other operators are described as

their derivatives (please refer to Appendix A, where equality,

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 4

MIN and MAX are expressed using AND, OR, NOT and

bitswap).

Gogna et al. and Jain et al., in their recent works, reported

multiple quantum well based spatial wavefunction-switched

field effect transistors (SWSFET) to be suitable candidates for

arbitrary quaternary operators [27]-[29]. Chattopadhyay et al.

also proposed a polarization-based all-optical scheme for

realizing the quaternary logic [30]. The design given in [27]-

[29] performs a look-up table-based operation using multiple

voltage lines connected to different quantum wells formed by

heteroepitaxial superlattice structures. According to their

design, any unary quaternary operator (inverters, bitswap, etc)

can be realized by using just one SWSFET; for two-input

operators at most five SWSFETs are required. However, for

two-input OR, AND, MIN, MAX gates, only three SWSFETs

are needed. For equality operator, five SWSFETs are required

if both inputs are variable; however, only one SWSFET is

needed if only one input is variable and the other is fixed,

making it a unary operator.

III. FUNDAMENTAL PROPERTIES OF QUATERNARY

ALGEBRA AND ITS OPERATORS

In this section we will present the fundamental properties of

quaternary algebra. Then some very important properties of

quaternary operators will be discussed. These properties are

helpful to express and manipulate complicated functions

algebraically to ensure efficient implementation.

A. Properties of Quaternary Algebra

The packed-binary representation of quaternary digits and

operators show that all fundamental operators except the

bitswap obey the axioms and properties of Boolean operators.

Most of these properties have their dual forms, where AND

and OR operators are interchanged, at the same time the

constants are inverted via NOT. The properties given below

show that our proposed logic satisfies all the requirements to

be treated as algebra, as postulated by Huntington [31].

a) Closure :

For every dyadic operator, 3} 2, 1, {0,),F(∈BA , which is

evident from definition. For every unary operator,

3} 2, 1, {0,)G(∈A .

b) Complement:

There exists a unary operator NOT for which the following

properties are true-

3 = 1 , 1 = + , + = + (1) 0011 aaaaAA (9)

0 = 0 , 0 = . , . = . (2) 0011 aaaaAA (10)

c) Associativity:

() () 000111 + + , + + = cbacba () CBA + + = (11)

() () ()000111 . . , . . = . . (2) cbacbaCBA

() () 000111 . . , . . = cbacba () CBA . . = (12)

d) Commutativity:

ABababbabaBA + = + , + = + , + = + (1) 00110011

(13)

ABababbabaBA . = . , . = . , . = . (2) 00110011

 (14)

e) Distributivity:

() () ()000111 . + , . + = . + (1) cbacbaCBA

() () () ()00001111 + . , . + = cabacaba ++

() ()CABA + . + =
 (15)

() () ()000111 . , . = . (2) cbacbaCBA +++

() () () ()00001111 . . , . . = cabacaba ++

() ()CABA . . = +

(16)

f) Boundedness:

AaaaaA = , = 0 + , 0 + = 0 + (1) 0101 (17)

 AaaaaA = , = 1 . , 1 . = 3 . 0101 (18)

3 = 1 , 1 = 1 + , 1 + = 3 + (2) 01 aaA (19)

 0 = 0 , 0 =0 . , 0 . = 0 . 01 aaA (20)

B. Properties of Quaternary Operators

a) Bitswap operator distributes itself over AND and

OR operators.

() 01010011 ,~+,~ +,+~=+~ bbaababaBA =

BA ~+~=
 (21)

() () 01010101 ,~.,~=,.,~=.~ bbaabbaaBA

BA ~.~=
 (22)

b) NOT obeys the De Morgan’s law, when applied to

the output of OR or AND gates.

BAbabababaBA .=.,.=+,+ =+ 00110011 (23)

BAbabababaBA +++ =,=.,. =. 00110011 (24)

c) Like NOT, outward inverter also obeys the De

Morgan’s law, when applied to the output of OR or AND

gates.

() () ()000111 + + , + + = + + (1) cbacbaCBA

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 5

() 11110011 +,+=,!=+! babababaBA ++

BAbbaa ! . !=,.,= 1111 (25)

() 11110011 .,.=.,.!=.! babababaBA

BAbbaa !+!=,+,= 1111 (26)

d) There is no compact expression that can be used to

express the distribution of inward inverter over AND or OR

operators.

() 'babababa'BA 11110011 +,+=+,+=)+(

() () 11110011 .,.=.,.=. baba'baba'BA

None of the above can be expressed in a form similar to

() ()0011 , , , bafbaf . Thus, there is no algebraic expression

to expand the operation of inward inverter following the AND

or OR operation.

e) The order of inward inverter and NOT can be

reversed.

() ()'Aaaaa'aa'A =, =,,= 111101 = (27)

f) The order of outward inverter and NOT can be

reversed.

() ()AaaaaaaA ! = , = , = ,! = ! 111101

(28)

g) The order of bitswap and NOT can be altered.

() ()AaaaaaaA ~ = ,! = , = ,~ = ~ 101001 (29)

h) The order of bitswap and inward inverter can be

altered under certain condition, not generally.

() () 0010 , = , = ~ aa'aa'A (30)

() 1111 , = ,~ = ~ aaaaA' (31)

This implies, () ()A''A ~ = ~ if and only if 01 aa = , i.e. A is

asymmetric.

i) The order of bitswap and outward inverter can be

altered under certain condition, not generally.

() 1111 , = ,~ = !~ aaaaA (32)

() 0010 , = ,! = ~! aaaaA (33)

This implies, () ()AA ~!= !~ if and only if 01 aa = , i.e. A is

symmetric.

j) The order of inward and outward inverters can

never be reversed under any condition.

() () 1111 , = , = ! aa'aa'A

(34)

() 1111 , = ,! = ! aaaa'A

(35)

This implies, () ()A''A ! ! ≠ under any circumstances.

C. Theorems of Quaternary Algebra:

There are several theorems in the proposed quaternary algebra

that are derived from the fundamental postulates of the

algebra and properties of the operators. Here we present a list

of theorems that are useful in algebraic operations -

a) The Law of Idempotency:

 AAA = + , AAA = . (36)

b) The Law of Absorption:

() ABAA = . + , () ABAA = + . (37)

c) The Law of Identity:

ABA = + , ABA = . ; for BA = (38)

d) The Law of Complements with NOT:

3 = + BA , 0 = . BA ; for BA = (39)

e) The Law of Involution with NOT and bitswap:

AA = , ()AA ~~= (40)

f) The Law of Elimination with NOT:

 YXYXX +=+ . , () YXYXX .. =+ (41)

g) The Law of Concensus with NOT:

ZXYXZYZXYX +=++ (42)

() () () () ()ZXYXZYZXYX ++=+++ ... (43)

h) The Law of Interchange with NOT:

() ())(.).(. ZXYXZXYX ++=+ (44)

() ()).(.)(. YXZXZXYX +=++

 (45)

IV. EXPRESSION OF ARBITRARY FUNCTIONS IN

QUATERNARY ALGEBRA

In this section, we will show the completeness of our

proposed logic algebra by demonstrating that any arbitrary

quaternary function can be expressed in terms of the operators

described in Section II. We will demonstrate two forms of

SOP (sum-of-products) to express any function.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 6

To describe a set of quaternary variables, we will often use

the array notation. For example, if a function F takes n inputs

namely X1, X2, X3, ….. Xn and gives a single output, then we

write the variables in array form as X = {X1, X2, X3, , Xn}

and the function is written as F(X). Similarly F(X,Y) takes

two such array operands of same length and gives a single

scalar output. Like functions, operators can also handle

arrays. For example, single-output OR and AND operators

with array inputs are given below:

n21
1

 X++X+XX
n

=i
i ≡≡ ∑∑X (46)

n21
1

. XXXX
n

=i
i ≡≡ ∏∏ X (47)

However, functions (operators) with multiple parallel

instances can be expressed as function (operator) arrays. For

functions arrays, both inputs and functions are identified in

boldface. The functions (operators) take one or more input

arrays of same length and generate an output array with same

length. Some examples are given below-

{ }),(),.......,,(),(nn11 YXFYXF≡YXF (48)

()




=

≠

ii

ii

BA

BA
=

everyfor;3

everyfor;0
,BAE (49)

{ }n21 ,.......,, XXX≡X (50)

{ }nn2211 ,.......,, Y+XY+XY+X+ ≡YX (51)

nn2211 YX++YX+YX≡∑ YX (52)

A. Implementation of any function in quaternary algebra

(Form-I of SOP):

Lemma 1: It is possible to generate a minterm with any value

i.e. 1, 2 or 3 for a particular set of input values for a finite

number of variables using only the equality and AND

operators.

Let us consider a set of n variables X={X1, X2, …, Xn}. For a

particular set of inputs { }n21 ,.......,, VVV=V where

{ }0,1,2,3i ∈V , a function MD(X,V) would produce an output

of 0 or D, where D is 1, 2 or 3. The functions defined as

follows:





otherwise ; 0

 if ;
 =),(

VX
VX

=D
M D (53)

If D = 3, we can define a function G(X,V) as follows:

∏=




),(
otherwise ; 0

 if ; 3
 =),(VXE

VX
VX

=
G (54)

If X and V are equal, only then we get G(X,V) = 3.

From (53) and (54), we can write

[] DM D .),(=),(∏ VXEVX (55)

We call MD(X,V) a minterm for quaternary algebra with

output D. If we set D = 3, then from (55), M3(X,V) = G(X,V).

In this derivation, both X and V are taken arbitrarily, so we

can say that any minterm can be expressed with only the

equality and AND operators which can generate a desired

output value (1, 2 or 3) for a defined set of input values for a

finite number of variables.

Lemma 2: It is possible to implement any function using only

equality, AND and OR operators.

Let us implement a function of n input variables, the set of

which is given by X. For each combination of inputs V, there

is a minterm MD(X,V) with output value D. Since X can

match with at most one input set V, only one minterm can

produce a non-zero output value. Thus, using Lemma 1, we

can express the function in the following form:

[] [] [] 3.),(2.),(1.),(

),(),(),(=)(

32

332211

∑ ∏∑ ∏∑ ∏

∑∑∑
++=

++

VXEVXEVXE

VXVXVXX

1

MMMF

 (56)

where V1 , V2 and V3 are sets of input combinations for

which the minterms will produce outputs of 1, 2 and 3,

respectively. For all other input combinations, the function

returns 0 as an output. Eq. (56) defines an expression for

sum-of-product (SOP) that can be used to implement

arbitrary functions. We call it form-I of SOP. An example of

form-I is given below by defining an arbitrary function -

{ } { }
{ } { }
{ } { }








2,3,1,,for ; 3

3,1,2,,for ; 2

1,2,0,,for ; 1

 =),,(

=ZYX

=ZYX

=ZYX

ZYXF (57)

Therefore, according to (56), we can write F(X,Y,Z) as

follows:

F(X,Y,Z) = X
1
.Y

2
.Z

0
.1 + X

3
.Y

1
.Z

2
.2 + X

2
.Y

3
.Z

1
.3 (58)

B. Development of Form-II of SOP

From the definition of OR, we know 1 + 2 = 3. We can use it

in (55) to decompose M3 in two components:

[] [] 2).(1),(=.3),(=),(3 +M ∏∏ VXEVXEVX

),(+),(= 21 VXVX MM (59)

Now, if we have k1 minterms with output 1, k2 minterms with

output 2 and k3 minterms with output 3, then using the

decomposition in (59), we can write





 termsfor ;

 termsfor ;
 =

322

311

k+kM

k+kM
M i (60)

Let us write Mi(X,V) and G(X,V) in packed-binary form:

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 7

i0i1i mm=M ,),(VX (61)

01 ,),(gg=G VX (62)

From (53)-(55), we get the following relation:







2 ; 1,0.,

1 ; 0,1.,
.,=),(

01

01
01

=igg

=igg
=iggM i VX (63)

After simplification, M1 and M2 can be written as

01 0,=),(gM VX (64)

,0=),(12 gM VX (65)

Using bitswap on both sides of (65),

12 0,=),(~ gM VX (66)

Since both g0 and g1 are dyadic functions, we have effectively

converted M1 and M2 into binary equivalent functions.

Now, both g0 and g1 are functions of n quaternary variables,

which are equivalent to 2n binary variables written in packed-

binary form. In a quaternary SOP, we have multiple

minterms; but all minterms will have the form of either M1 or

M2. Using (64) and (66), we can get the binary equivalents of

all such minterms and vice versa. Assuming all inputs and

outputs to be in binary equivalents, we can use any binary

SOP generation and minimization technique to get g0 and g1.

Here, for demonstration, we use Karnaugh's mapping

technique (K-map), but it is possible to use other techniques

such as espresso heuristic logic minimizer. Once g0 and g1 are

obtained, the rest of the process to get quaternary SOP is

same regardless of the binary SOP generation technique.

Let us separate the two constituent binary parts of the

quaternary SOP as f1 and f0, where,

f0 ≡ F . 1 (67)

f1 ≡ ~ (F . 2) = ~ F . 1 (68)

If we have k1 + k3 non-zero minterms for f0 and k2 + k3 non-

zero minterms for f1 from two different K-maps. Therefore,

we can write:

 terms + ; .1 3100 kk=fFF ∑≡= 0g (69)

 terms + ; .1~ 3211 kk=fFF ∑≡= 1g (70)

where g0 and g1 are vectors of binary minterms. Once f0 and f1

are obtained, quaternary SOP function F can be written

readily.

0101 ,.1+.2~ ffFFF ≡= (71)

Eq. (71) results in a number of transformations that convert

binary minterms directly into their quaternary counterparts,

which are given in Table III. Here, X is any quaternary

proposition and x0, x1 are its component bits that appear in

binary SOP. Since the binary SOPs and their transformations

in Table III contain only OR, AND, bitswap and NOT, we see

that only these four operators are necessary and sufficient to

describe any quaternary function. In Appendix A, we show

how to obtain form-II of SOP for three different functions.

Another important feature of form-II of SOP is that it can be

used to directly convert a binary function into quaternary. If a

binary system has 2m inputs and 2n outputs, these 2m inputs

can be grouped as m quaternary inputs. Then we can directly

convert the 2n binary outputs into n quaternary outputs.

TABLE III. TRANSFORMATION PAIRS FOR BINARY-TO-
QUATERNARY FORM-II SOP CONVERSION

1.00 FFf =→ 2.~ 11 FFf =→

1 . 0 Xx ≡ 2 . ~0 Xx ≡

1 . 0 Xx ≡ 2 . ~0 Xx ≡

1 . ~1 Xx ≡ 2 . 1 Xx ≡

1 . ~1 Xx ≡ 2 . 1 Xx ≡

C. Similarity between MIN, MAX and AND, OR operators

We can express MIN and MAX operators in form-II of SOP

(please refer to Appendix A for derivation), as given below,

).2.().1.~.~.~.~.(),(BA+AABB+BAB+A=BAMIN

 (72)

).2+().1.~.~.~.(~),(BA+AB+BAB+BA+A=BAMAX

 (73)

In (72) and (73), if we put any values of A and B except (A,B)

= (1,2) or (2,1), then we find that,

BA=BAMIN .),((74)

BA=BAMAX +),((75)

where, (A,B) ≠ (1,2), (2,1). Now, (74) and (75) are true for

any finite number of inputs as long as the set of inputs do not

contain both 1 and 2 simultaneously. According to (55), in

form-I of SOP, each minterm MD is the AND of several

E(X,V) and D literals. Since E(X,V) returns only 0 or 3 and

the only literal that can have a value of 1 or 2 is D, there is no

way both 1 and 2 can appear as inputs of an AND gate; thus

MIN and AND are effectively equivalent for each minterm.

Similarly, only one minterm remains non-zero at a time, so

the OR stage may not have both 1 and 2 as inputs together,

making OR and MAX functionally equivalent. Therefore, in

case of form-I of SOP, AND and OR can be replaced by MIN

and MAX functions, respectively. It should be noted that this

argument is not valid for form-II of SOP.

There are other examples where MIN(MAX) is equivalent to

AND(OR), such as the design of decoder and multiplexer that

will be discussed later. This is an important feature because

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 8

many of the existing quaternary logic schemes have MIN and

MAX as operators and these operators have already been

realized physically [16],[17].

V. COMPUTATION OF UPPER BOUND OF GATE COUNT

AND GATE DEPTH FOR SOP EXPRESSIONS

In this section we will compute the maximum number of

gates and gate depth required to evaluate the SOP expressions

of form-I or II for any arbitrary function. We assume the gates

to be made of SWSFETs as described in [27]-[29] and base

our calculations particularly on this technology. Each dyadic

AND and OR gate consists of three SWSFETs in two levels,

while each unary operation takes only one SWSFET.

Equality, however, takes five SWSFETs spanned in two

levels.

The following two lemmas are derived to compute the gate

count and gate depth of a multi-level AND or OR gate array

(please refer to Appendix B for derivation).

Lemma 3: If an AND (OR) gate may not take more than v

inputs, then it is possible to compute the AND (OR) of n

propositions using exactly
1

1









−

−

v

n
gates.

Lemma 4: If an AND (OR) gate may not take more than v

inputs, then it is possible to compute the AND (OR) of n

propositions within  log nv depth of operators.

A. Computation of upper bound of gate count and gate

depth for form-I of SOP

For form-I of SOP, any minterm that produces a non-zero

output is represented with literals consisting of equality

operators. Suppose we have a function with n arguments. So,

the truth table of this function has 4
n
 rows. If the truth table of

the function is expressed as a two dimensional map (different

from K-map) as shown in Table IV for n = 2, the worst case

is observed if no two columns or two rows are identical and

the function never gives an output of 3 or 0.

TABLE IV. WORST CASE TRUTH TABLE OF FORM-I OF SOP

 A

 B

0 1 2 3

0 2 1 2 1

1 1 2 1 2

2 2 1 1 2

3 1 2 2 1

Since there are n inputs and each of them may be equal to 0,

1, 2 or 3; there are at most 4n equality operations in parallel to

calculate all these literals. Then, there are 4
n
 minterms, each

containing n literals and a constant value for that minterm

output. Starting with these literals, each minterm takes N1

gates spanned in d1 gate levels as given below (from Lemma

3 and 4)-

() 1log
11 +n=d v ,













− 11
1

v

n
=N (76)

Here, v1 is the maximum number of inputs to an AND gate.

There are 4
n
 minterms calculated in parallel, each requiring N1

number of gates.

The OR of these 4
n
 minterms are calculated using N2 gates

and spanned in d2 gate levels as given below -

 4log
22

n
v=d ,















−

−

1

14

2
2

v
=N

n

 (77)

Here, v2 is the maximum number of inputs to an OR gate.

Now, each literal is the output of an equality operation, which

is assumed to take N0 number of gates spanned in d0 number

of gate levels. So the total number of gates is calculated as -















−

−













− 1

14

1
44

21
0

v
+

v

n
+nN=N

n
n (78)

The maximum gate depth is calculated as -

()   4log1log
210

n
vv ++n+d=d (79)

Considering SWSFET technology, we get the following

transistor count and depth for v1 = v2 = 2,

()()114320 −+n+n=N n
T (80)

() ()n++n+=dT 21log22 2 (81)

B. Computation of upper bound of gate count and gate

depth for form-II of SOP

We need the literals X, X , ~X and X~ to write form-II of

SOP for any function, where X is an argument of the function.

A literal along with its NOT never appear in the same

minterm; and only one of ~X or X~ can co-exist with X or X

in the same minterm. So we need at most two of the four

propositions involving X as mentioned above. Therefore, we

can conclude that if a function consists of n arguments, there

may be at most 2n propositions in a single minterm. So if we

consider that the maximum number of propositions of a single

AND gate is v1, we can conclude from Lemma 3 and 4 that

the maximum number of gates and maximum gate depth for

any minterm will be given by -

 2log
11 n=d v ,

1

12

1
1 









−

−

v

n
=N (82)

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 9

TABLE V. K-MAP FOR WORST CASE OF F1 OR F0

 01,aa

01,bb

0,0 0,1 1,1 1,0

0,0 0 1 0 1

0,1 1 0 1 0

1,1 0 1 0 1

1,0 1 0 1 0

To calculate the upper bound of gate count and gate depth, we

need to consider the worst case for f1 and f0, each of which has

the checkerboard formation of 1’s and 0’s like the one shown

in Table V. This is definitely the worst case because if we

convert any 1 to 0 or any 0 to 1, then either the number of

minterms or number of propositions in a single minterm or

both will reduce.

If the worst case occurs, half of the entries of the K-map must

be 1. There are 2
2n

 entries in a binary K-map for n quaternary

propositions. Therefore, K-map for f1 or f0 may have at most

2
2n-1

 non-zero entries which is theoretically the maximum

number of minterms. Now, if we limit the number of

propositions of OR gate to be v2, the maximum depth and

maximum number of gates for the OR operation for either F1

or F0 are found to be-

 2log 12

22
−n

v=d ,
1

12

2

12

2












−

−−

v
=N

n

 (83)

The computation of f1 and f0 can be done in parallel and the

depths are same for both f1 and f0 in the worst case. If the gate

depth required to calculate all literals (except X itself) X , ~X

and X~ is given by d0 and the total depth is given by d, then

    22log2log 12

210 ++n+d=d n
vv

− (84)

Here 2 is added for the computation of .1+.2~ 01 FF , the

bitswap operation shown here is distributed over the literals

like the transformations in Table IV and thus this is not

counted separately.

Since we need different gates for the computation of f1 and f0

in parallel, we need AND gates for at most 4
n
 minterms and

OR gates for both F0 and F1. Therefore, if the number of gates

required to calculate all literals except X itself is given by N0

and the total number of gates is given by N, then -

324 210 +N+N+N=N n (85)

Here, 3 is added to account for the AND and OR gates needed

to compute .1+.2~ 01 FF . We can also calculate N0 as 3n,

since each argument has three literals to be calculated apart

from X itself. Therefore, the final expression for total number

of gates is -

3
1

12
2

1

12
43

2

12

1

+
v

+
v

n
+n=N

n
n















−

−













−

− −

 (86)

Considering SWSFET technology, we get the following

transistor count and depth for v1 = v2 = 2,

()123 12 ++ n+n=N n
T (87)

 ()122log21 2 +n+n+=dT (88)

A. Salient features of form-I and form-II of SOP
Since the two forms of SOP are derived in different ways, it is

often difficult to tell beforehand which form is more efficient.

However, there are certain applications that favor one form

over another. The design of many logic circuits that rely on a

look-up table-like working principle, such as a multiplexer

and any other circuit based on it, becomes very straight-

forward and efficient if form-I of SOP is utilized (refer to

Section VI). This is also true normally for functions with

many inputs where the number of minterms is small

compared to the number of variables and those terms are

located sparsely in the truth table. Form-I of SOP also exists

in literature in various analogous forms, having various

design and implementation techniques already been

developed for it [17].

However, the biggest advantage of form-II of SOP is the

flexibility it brings in designing large and complex logic

functions. Any binary logic simplification technique can be

used with it and it allows direct transformation of binary logic

circuits in quaternary. Also, form-II of SOP is subject to more

optimization techniques than form-I as discussed in [25]. Not

only that, methodological design of tree-based logic circuits

such as fast adders, comparators and encoders becomes much

simpler of a problem if we start with form-II of SOP

[21],[22],[26]. Finally, if a large binary system is to be

converted into a quaternary system by replacing the internal

circuitry of the system, while putting binary-to-quaternary

encoders and quaternary-to-binary decoders on input and

output sides of the system respectively, then form-II of SOP

would more likely be a reasonable choice due to its close

relation with binary SOP expressions.

VI. DESIGN OF SOME IMPORTANT COMBINATIONAL

QUATERNARY CIRCUITS

Combinational circuits are the vital elements for any digital

system. Our proposed quaternary operators can be employed

efficiently to design many common combinational circuits

[20]-[26]. We generalize some of them here using the form-II

of SOP.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 10

A quaternary 1-to-4 decoder (Fig. 2a, Table VI) has one input

S and four outputs, defined by the array L. Only one of the

outputs can be equal to 3 at a time, all other outputs remain 0.

The outputs are defined by the following equation -

3 2, 1, 0, ;][=iS=i iL (89)

In general, for n-to-4
n
 line decoder, we have n input lines

given by the array, S = {S1, S2, …., Sn}. The array V denotes

each of 4
n
 possible combinations of inputs. The state of any

output line is denoted by-

∏),(][jVSEL =j (90)

A 1-to-4 demultiplexer (Fig. 2b, Table VI) is same as 1-to-4

decoder, but the output passes an additional data input D

through one of the output lines set by the selector input S. The

outputs of the 1-to-4 and n-to-4
n
 demultiplexers are expressed

by the following equations -

3 2, 1, 0, ; .][=iSD=i iL (91)

∏),(.][jVSEL D=j
 (92)

(a)

 (b)

(c)

Figure 2. Quaternary 4-line (a) decoder, (b) demultiplexer and (c)

multiplexer.

TABLE VI. TRUTH TABLES OF QUATERNARY 1-TO-4

DECODER, DEMULTIPLEXER AND 4-TO-1 MULTIPLEXER

S Decoder output

(L)

Demultiplexer

output (L)

Multiplexer

output

(F)
[0] [1] [2] [3] [0] [1] [2] [3]

0 3 0 0 0 D 0 0 0 D0

1 0 3 0 0 0 D 0 0 D1

2 0 0 3 0 0 0 D 0 D2

3 0 0 0 3 0 0 0 D D3

A multiplexer can be constructed using a decoder. There are

as many data inputs as the outputs of the decoder and each

output is a minterm involving the decoder output and the

corresponding data input (product of decoder output L and

data input D). The OR of all such minterms give the output of

the multiplexer, expressed as a SOP of form-II. If there are n

selectors and 4
n

data inputs, then the multiplexer output is

given by -

() ()∑ ∏∑
−

=

−

=

14

0

14

0

),(.][][.][

nn

jj

j=jj=M jVSEDLD (93)

For n = 1 (Fig. 2c, Table VI),

() 3 2, 1, 0, ; .][=iSi=M i∑ D (94)

VII. COMPARISON WITH EXISTING LOGIC SYSTEMS

In this section we present the comparison between the

proposed algebra and some other existing variants of

quaternary logic. Here we would like to make the comparison

in both gate level and transistor-level, but direct transistor

level comparison is not possible because no other version of

quaternary logic has been implemented using SWSFET, a

technology fully compatible with the proposed logic.

Gate/transistor count, however, is a relative measure of

complexity associated with the design of logic circuits. Since

a comparison with SWSFET devices with similar binary

FETs is presented in [27], we will present a transistor-level

comparison in our comparison with binary logic system based

on that.

Khan et al. used quaternary shift gates (QSG) and 2-digit

quaternary controlled shift gates (QCSG) or Muthukrishnan-

Stroud (M-S) gates to show the realization of several higher

level gates like Feynman gates and Toffoli gates

[9],[12],[32],[33]. Using these gates, quaternary decoder,

multiplexer and demultiplexer were designed. In the context

of quantum logic, qudit means quantum digit.

To implement 2-to-16 decoder with active-1 output, Khan [9]

used 16 of 3-digit QCSGs and 20 of QSGs. Since each 3-digit

QCSG required 5 of 2-digit QCSGs, this design took 80 of 2-

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 11

digit QCSGs and 20 of QSGs. For both 16-to-1 multiplexer

and 2-to-16 demultiplexer, they used 16 of 3-input Toffoli

gates in addition to their 2-to-16 decoder circuit proposed in

the same work.

Another design of 2-to-16 decoder circuit was given by Khan

[12], where QSGs and 3-qudit modified M-S gates were used,

16 of each type. Each modified M-S gate individually

required 5 of 2-qudit M-S gates and 4 QSGs. 1-to-4

demultiplexer and 4-to-1 multiplexer were also designed,

each with 4 of 3-input Toffoli gates, 8 M-S gates and 4 QSGs.

A 3-input Toffoli gate was realized using 13 of M-S gates and

14 of QSGs.

The above results from the literature are listed in Table VII

along with the gate/SWSFET counts for the same devices

using the proposed logic. Although a direct comparison is not

possible in terms of the gate count, significant reduction in

design complexity is readily evident from the results of the

present work.

TABLE VII. COMPARISON OF THE PROPOSED LOGIC WITH OTHER QUATERNARY VARIANTS

Device Gate Count (Literature) Gate/SWSFET Count (Current Work)

2-to-16

decoder

16x 3-digit QCSGs, 20x QSGs [9]

equivalent: 80x 2-digit QCSGs, 20x QSGs

8x unary equalities, 16x 2-input AND

equivalent: 8 + 48 (= 56) SWSFETs

2-to-16

decoder

16x QSGs, 16x 3-digit modified M-S [12]

equivalent: 80x QSGs, 80x M-S

8x unary equalities, 16x 2-input AND

equivalent: 8 + 48 (= 56) SWSFETs

2-to-16

demux

16x 3-digit QCSGs, 20x QSGs, 16x 3-input Toffoli [9]

equivalent: 80x 2-digit QCSGs, 244x QSGs, 208x M-S

8x unary equalities, 32x 2-input AND

equivalent: 8 + 96 (= 104) SWSFETs

16-to-1

mux

16x 3-digit QCSGs, 20x QSGs, 16x 3-input Toffoli [9]

equivalent: 80x 2-digit QCSGs, 244x QSGs, 208x M-S

8x unary equalities, 32x 2-input AND, 15x 2-input OR

equivalent: 8 + 96 + 45 (= 149) SWSFETs

1-to-4

demux

8x 2-digit M-S, 4x QSGs, 4x 3-input Toffoli [12]

equivalent: 60x QSGs, 60x 2-digit M-S

4x unary equalities, 4x 2-input AND

equivalent: 4 + 12 (= 16) SWSFETs

4-to-1

mux

8x 2-digit M-S, 4x QSGs, 4x 3-input Toffoli [12]

equivalent: 60x QSGs, 60x 2-digit M-S

4x unary equalities, 4x 2-input AND, 3x 2-input OR

equivalent: 4 + 12 + 9 (= 25) SWSFETs

TABLE VIII. COMPARISON OF THE PROPOSED LOGIC WITH BINARY LOGIC

Binary Device Gate Count in Binary Logic Quaternary Gate/SWSFET Count in Current Work

2-to-4 decoder
4x NOR, 2x NOT

CMOS equivalent: 16 + 4 (= 20) FETs

4x unary equalities

equivalent: 4 SWSFETs

Dual 2-to-4

demux

4x NAND, 8x NOR, 3x NOT

CMOS equivalent: 16 + 32 + 6 (= 54) FETs

4x unary equalities, 4x 2-input AND

equivalent: 4 + 12 (= 16) SWSFETs

4-to-16

decoder

8x NAND, 16x NOR, 4x NOT

CMOS equivalent: 32 + 64 + 4 (= 100) FETs

8x unary equalities, 16x 2-input AND

equivalent: 8 + 48 (= 56) SWSFETs

Dual

4-to-1 mux

8x NAND, 10x NOR, 4x NOT

CMOS equivalent: 32 + 40 + 8 (= 80) FETs

4x unary equalities, 4x 2-input AND, 3x 2-input OR

equivalent: 4 + 12 + 9 (= 25) SWSFETs

In Table VIII, we compare some binary logic blocks with

their quaternary counterparts. Here binary devices are

assumed to be implemented using CMOS gates which share

the same or similar technology as the SWSFETs.

NAND/NOR gates are restricted to 2-inputs only and number

of inputs/outputs are taken to be an exponent of 2, to avoid

redundancy in quaternary implementation. This is why

demultiplexer and multiplexer are assumed to have dual data

lines to match the quaternary equivalent. For quaternary

implementation, it is assumed that all inputs and outputs are

available in quaternary so that no encoder/decoder is

necessary. It was claimed in [27]-[29] that up to 75%

reduction in transistor count and up to 50% reduction in data

interconnect densities could be achieved with reduced power

dissipation and gate delay, if quaternary logic with SWSFET

technology could be used instead of CMOS binary logic.

Table VIII is in good agreement with the claim about the

transistor count, as the reduction in transistor count is

observed in between 44% and 80%.

VIII. CONCLUSION

In this paper, we have presented a novel quaternary algebra

which serves as a bridge between the well-developed binary

logic and the emerging quaternary logic. The algebra aids in

transforming any binary function into its quaternary version

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 12

and allows the quaternary functions to be simplified and

manipulated using the simplifying techniques of the binary

logic. It also includes operators that are commonly found in

other existing quaternary logic variants, and thus is capable of

handling logical expressions derived in other existing

quaternary logic systems. Besides, using the unique properties

of the operators defined in this logic, we have established two

methods to express any quaternary function as a sum-of-

products (SOP) expression, one of them being completely

unique to the proposed logic. We have presented the

theoretical analyses of both forms of SOPs and discussed their

unique applications. Finally several simple logic circuits have

been presented and based on them, a comparative study of the

proposed logic with binary and other quaternary logic systems

have been made.

REFERENCES

[1] Hurst, S.L; “Multiple-Valued Logic; its Status and its

Future”, Computers, IEEE Transactions on, 33 (12), 1160-

1179, (1984)

[2] Miller, D.M.; Thornton, M.A.; “Multiple Valued Logic:

Concepts and Representations”, Synthesis Lectures on Digital

Circuits and Systems, Morgan & Claypool Publishers, (2007)

[3] Smith, K.C.; “The Prospects for Multivalued Logic- A

Technology and Applications View”, Computers, IEEE

Transactions on, 30, 619-634, (1981)

[4] Fijany, A.; Vatan, F.; Mojarradi, M.; Toomarian, B.; Blalock,

B.; Akarvardar, K.; Cristoloveanu, S.; Gentil, P.; “The G4-

FET- a universal and programmable logic gate”, Proceedings

of the 15th ACM Great Lakes symposium on VLSI (GLSVLSI

2005), 349-352, (2005)

[5] Keshavarzian, A.P.; Navi, K.; “Optimum Quaternary Galois

Field Circuit Design through Carbon Nano Tube

Technology”, Proceedings, International Conference on

Advanced Computing and Communications (ADCOM 2007),

214-219, (2007)

[6] Balaji, B.; Malik, S. S.; “Design of Dual Dynamic Flip-Flop

with Featuring Efficient Embedded Logic for Low Power

CMOS VLSI Circuits”, International Journal of Computer

Sciences and Engineering, E-ISSN: 2347-2693, 2 (9), 75-77,

(2014)

[7] Kahrari, Z.; Karimi, G.; “A Novel Low Power Fault Tolerant

Full Adder for Deep Submicron Technology”, International

Journal of Computer Sciences and Engineering, E-ISSN:

2347-2693, 4 (1), 14-16, (2016)

[8] Chattopadhyay, T.; Taraphdar, C.; Roy, J.N.; “Quaternary

Galois field adder based all-optical multivalued logic

circuits”, Applied Optics, 48 (22), E35-E44, (2009)

[9] Khan, M.H.A.; “Reversible Realization of Quaternary

Decoder, Multiplexer, and Demultiplexer Circuits”,

Engineering Letters, 15 (2), 203-207 (2007)

[10] Falkowski, B.J.; Rahardja, S.; “Generalised hybrid arithmetic

canonical expansions for completely specified quaternary

functions”, Electronics Letters, 37 (16), 1006-1007, (2001)

[11] Khan, M.H.A.; Siddika, N.K.; Perkowski, M.A.;

“Minimization of Quaternary Galois Field Sum of Products

Expression for Multi-Output Quaternary Logic Function

Using Quaternary Galois Field Decision Diagram”,

Proceedings, 38th IEEE International Symposium on

Multiple-Valued Logic (ISMVL 2008), 125-130, (2008)

[12] Khan, M.M.M.; Biswas, A.K.; Chowdhury, S.; Tanzid, M.;

Mohsin, K.M.; Hasan, M.; Khan, A.I.; “Quantum realization

of some quaternary circuits”, Proceedings, TENCON 2008,

IEEE Region 10 Conference, (2008)

[13] Yasuda, Y.; Tokuda, Y.; Zaima, S.; Pak, K.; Nakamura, T.;

Yoshida, A.; “Realization of quaternary logic circuits by n-

channel MOS devices”, Solid-State Circuits, IEEE Journal of,

21 (1), 162-168, (1986)

[14] Park, S.J.; Yoon, B.H.; Yoon, K.S.; Kim, H.S.; “Design of

quaternary logic gate using double pass-transistor logic with

neuron MOS down literal circuit”, Proceedings, 34th IEEE

International Symposium on Multiple-Valued Logic (ISMVL

2004), 198-203, (2004)

[15] da Silva, R.C.G.; Boudinov, H.; Carro, L.; “A novel Voltage-

mode CMOS quaternary logic design”, Electron Devices,

IEEE Transactions on, 53 (6), 1480, (2006)

[16] Inaba, M.; Tanno, K.; Ishizuka, O.; “Realization of NMAX

and NMIN functions with multi-valued voltage comparators”,

Proceedings, 31st IEEE International Symposium on

Multiple-Valued Logic (ISMVL 2001), 27-32, (2001)

[17] Datla, S.R.; Thornton, M.A.; “Quaternary Voltage-Mode

Logic Cells and Fixed-Point Multiplication Circuits”,

Proceedings, 40th IEEE International Symposium on

Multiple-Valued Logic (ISMVL 2010), 128-133, (2010)

[18] Chattopadhyay, T.; Roy, J.N.; “Polarization-encoded all-

optical quaternary multiplexer and demultiplexer - A

proposal”, Optik - International Journal for Light and

Electron Optics, 120 (17), 941-946, (2009)

[19] Vranesic, Z. G.; Waliuzzaman, K. M.; “Functional

transformation in simplification of multivalued switching

functions”, IEEE Transactions on Computers, 21(1), 102-105

(1972)

[20] Jahangir, I.; Hasan, D.M.N.; Siddique, N.A.; Islam, S.;

Hasan, M.M.; “Design of quaternary sequential circuits using

a newly proposed quaternary algebra”, Proceedings, 12th

International Conference on Computers and Information

Technology (ICCIT 2009), 203, (2009)

[21] Das, A.; Jahangir, I.; Hasan, M.; Hossain, S.; “On the design

and analysis of quaternary serial and parallel adders”,

Proceedings, TENCON 2010, IEEE Region 10 Conference,

1691, (2010)

[22] Jahangir, I.; Das, A.; “On the design of quaternary

comparators”, Proceedings, 13th International Conference on

Computers and Information Technology (ICCIT 2010), 241,

(2010)

[23] Jahangir, I.; Hasan, D.M.N.; Islam, S.; Siddique, N.A.;

Hasan, M.M.; “Development of a novel quaternary algebra

with the design of some useful logic blocks”, Proceedings,

12th International Conference on Computers and Information

Technology (ICCIT 2009), 197, (2009)

[24] Jahangir, I.; Hasan, D.M.N.; Reza, M.S.; “Design of some

quaternary combinational logic blocks using a new logic

system”, Proceedings, TENCON 2009, IEEE Region 10

Conference, (2009)

[25] Das, A.; Jahangir, I.; Hasan, M.; “Optimization of sum of

product expressions in a novel quaternary algebra”,

Proceedings, International Conference on Informatics,

Electronics & Vision (ICIEV), (2014)

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 13

[26] Jahangir, I.; Das, A.; Hasan, M.; “Design of novel quaternary

encoders and decoders”, Proceedings, International

Conference on Informatics, Electronics & Vision (ICIEV),

(2012)

[27] Gogna, P.; Lingalugari, M.; Chandy, J.; Heller, E.; Hasaneen,

E.S.; Jain, F.; “Quaternary logic and applications using

multiple quantum well based SWSFETs”, International

Journal of VLSI design & Communication Systems (VLSICS),

3(5), 27-42 (2012)

[28] Jain, F.C.; Chandy, J.; Miller, B.; Hasaneen, E.S.; Heller, E.;

“Spatial wavefunction-switched (SWS)-FET: A novel device

to process multiple bits simultaneously with sub-picosecond

delays”, International Journal of High Speed Electronics and

Systems, 20(03), 641-652 (2011)

[29] Gogna, P.; Suarez, E.; Lingalugari, M.; Chandy, J.; Heller, E.;

Hasaneen, E.S.; Jain, F.C.; “Ge-ZnSSe Spatial Wavefunction

Switched (SWS) FETs to Implement Multibit SRAMs and

Novel Quaternary Logic”, Journal of electronic materials,

42(11), 3337-3343 (2013)

[30] Chattopadhyay, T.; Roy, J. N.; “All-optical quaternary

computing and information processing: a promising path”,

Journal of Optics, 42(3), 228-238 (2013)

[31] Huntington, E.V.; “Sets of Independent Postulates for the

Algebra of Logic”, Transactions of the American

Mathematical Society, 5 (3), 288-309, (1904)

[32] Khan, M.H.A.; “Quantum Realization of Quaternary

Feynman and Toffoli Gates”, Proceedings, 4th International

Conference on Electrical and Computer Engineering (ICECE

2006), 157–160, (2006)

[33] Khan, M.H.A.; Perkowski, M.A.; “GF(4) Based Synthesis of

Quaternary Reversible-Quantum Logic Circuits”, Journal of

Multiple-Valued Logic and Soft Computing, 13, 583-603,

(2007)

Authors Profile

Ifat Jahangir received his B.Sc (2011) in Electrical and Electronic
Engineering from Bangladesh University of Engineering and
Technology and M.S (2015) in Electrical Engineering from
University of South Carolina where he has been currently pursuing
his Ph.D. degree. His research interests include multi–valued logic
synthesis and development and characterization of novel III-Nitride
and 2D materials based devices for electronic and sensing
applications. He is a graduate student member of IEEE, IEEE
Electron Devices society and Optical Society of America (OSA).

Anindya Das received his B.Sc in Electrical and Electronic
Engineering from Bangladesh University of Engineering and
Technology in 2011. He worked in Stochastic Logic Ltd. for a year
as quantitative software developer. Since 2012 he has been pursuing
his Ph.D degree in Iowa University. Although his major research
interest is bioinformatics, he is also interested in design and analysis
of algorithms, machine learning, multiple-valued logic synthesis
and design of corresponding circuit elements.

Masud Hasan received his PhD from the University of Waterloo,
Canada in 2005. He is a professor in the Department of Computer
Science and Engineering, Bangladesh University of Engineering
and Technology. Currently he is on sabbatical leave and working as
a professor in the Department of Computer Science, Taibah
University, Saudi Arabia. His research interests include
computational geometry, algorithms in bioinformatics, and quantum
circuit design. He has published more than sixty papers in
international journals and international peer reviewed conferences.

APPENDIX A

Logical synthesis of equality operator
The truth table of E(A,B) can be written in the matrix form

as shown in Table A-I.

The above results from the literature are listed in Table VII

along with the gate/SWSFET counts for the same devices

using the proposed logic. Although a direct comparison is not

possible in terms of the gate count, significant reduction in

design complexity is readily evident from the results of the

present work.

TABLE A-I : TRUTH TABLE OF E(A,B)

 B

A

0 1 2 3

0 3 0 0 0

1 0 3 0 0

2 0 0 3 0

3 0 0 0 3

The binary truth tables for e0(a0,a1,b0,b1) and e1(a0,a1,b0,b1)

are identical, having 1’s at the locations where E(A,B) has 3’s.

The binary functions are thus identical as well and can be

written as –

() () 10101010110100 ...,,,,,, bbaabbaaebbaae ==

101010101010 bbaabbaabbaa +++
 (A-1)

From (A-1), we calculate E(A,B) -

() BBAABBAABBAABAE .~..~.~..~.~..~, ++=

BBAA .~..~+
 (A-2)

Now, we can manipulate E(A,B) further to get a more

compact expression.

() () ()BABABABABABABAE ...~.~...~.~, +++=

() ()BABABABA ~.~~.~... ++= (A-3)

Thus, we get two equivalent expressions -

)(~.)(),(BABABAE ⊕⊕= (A-4)

)(~)(),(BABABAE ⊕+⊕= (A-5)

Here, instead of using just AND, OR, NOT and bitswap, we

used XOR/XNOR operators. In this way, the functional

operators can be used to reduce SOP expressions of form-II.

 Logical synthesis of MIN and MAX operator
We will express two functional operators MIN(A, B) and

MAX(A, B) in form-II of SOP where A and B are two

quaternary propositions. Let us first implement MIN(A, B).

The truth table of the function is shown in Table A-II.

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 14

TABLE A-II : TRUTH TABLE OF QUATERNARY MIN FUNCTION

 A

 B

0 1 3 2

0 0 0 0 0

1 0 1 1 1

3 0 1 3 2

2 0 1 2 2

Now, we consider the cells which contain 1 or 3 as true for

min0. Similarly, we consider the cells which contain 2 or 3 as

true for min1. The remaining cells will contain 0. The K-map

for min0 is given in Table A-III.

TABLE A-III : K-MAP FOR MIN0 FUNCTION

 01,aa

01,bb

0,0 0,1 1,1 1,0

0,0 0 0 0 0

0,1 0 1 1 1

1,1 0 1 1 0

1,0 0 1 0 0

From the K-map given above, we can write the following

expressions:

0110110001010),,,(aab+bba+ba=bbaamin (A-6)

).1.~.~.~.~.(),(0 AABB+BAB+A=BAMIN (A-7)

Now, the K-map for min1 is given in Table A-IV.

TABLE A-IV : K-MAP FOR MIN1 FUNCTION

 01,aa

01,bb

0,0 0,1 1,1 1,0

0,0 0 0 0 0

0,1 0 0 0 0

1,1 0 0 1 1

1,0 0 0 1 1

From the K-map we can get the following expression:

1101011 .),,,(ba=bbaamin (A-8)

2.).(),(1 BA=BAMIN (A-9)

Now, we can combine (A-7) and (A-9) to get the complete

function:

).2.().1.~.~.~.~.(),(BA+AABB+BAB+A=BAMIN

 (A-10)

Similarly, we can derive MAX1(A, B) and MAX0(A, B) from

Table A-V.

TABLE A-V : TRUTH TABLE OF QUATERNARY MAX

FUNCTION

 A

 B

0 1 3 2

0 0 1 3 2

1 1 1 3 2

3 3 3 3 3

2 2 2 3 2

Using the same technique described for MIN(A, B), we can

write the following expressions:

0101010101010),,,(ab+ba+bb+aa=bbaamax (A-11)

).1.~.~.~.(~),(0 AB+BAB+BA+A=BAMAX (A-12)

1101011 +),,,(ba=bbaamax (A-13)

).2+(),(1 BA=BAMAX (A-14)

Now, we can combine (A-12) and (A-14) to get the complete

function:

).2+().1.~.~.~.(~),(BA+AB+BAB+BA+A=BAMAX

 (A-15)

APPENDIX B

Lemma 3: If an AND (OR) gate may not take more than v

inputs, then it is possible to compute the AND (OR) of n

propositions using exactly
1

1









−

−

v

n
gates.

Proof: Suppose, there are n propositions and we want to

calculate the AND of them, where the maximum number of

inputs to an AND gate is v. If n > v, we will need more than

one gates to perform the computation. Now, the number of

gates is minimized if at most one gate is allowed to have less

than v inputs. To minimize delay, the inputs are divided into

groups and processed in parallel AND gates. If there are x0

number of gates each processing exactly v number of such

propositions, then -

n=r+xv 00 (B-1)

where,










v

n
=x0 , 








−

v

n
vn=r0 (B-2)

These x0 gates have x0 outputs and also there are r0

propositions left if n is not absolutely divisible by v. So at the

 International Journal of Computer Sciences and Engineering Vol.-4(5), PP(01-15) May 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 15

second level, there are x0 + r0 propositions. If this level has x1

gates and r1 remaining propositions, then -

 0110 rr+xv=x −
 (B-3)

Generalizing for higher levels, we get the following for the m-

th level,

1-mmm1-m rr+xv=x −
 (B-4)

Now, if (m+1)-th level is the last level, then it must have only

one gate so that the single output gives the AND of all n

propositions. Let us assume that the last gate may have fewer

than v propositions and the number of unused inputs is δ < v.

Therefore we get the following equation-

mm rδv=x −−
 (B-5)

Summing the equations for all the stages between x0 and xm

using (B-3) and (B-5), we get the following equation -

0

m

1=i
i

m

0=i
i rδv+xv=x −−∑∑

 (B-6)

This can be simplified to the following form-

11

00
m

1=i
i

−









−−









=
−

−
∑

v

v

n
vn+δ+v

v

n

v

r+δ+vx
=x (B-7)

So, the total number of gates is -

1

1

1
m

1=i
i0

−

−







−









∑
v

v

n
vn+δ+

v

n
v

=x+x+=N (B-8)

After simplification,

11

1

−−

−

v

δ
+

v

n
=N (B-9)

The quantity δ is used to account for the unused inputs to the

final gate, so that N becomes an integer. Therefore, N can be

expressed as -










−

−

1

1

v

n
=N (B-10)

Although we assumed so far that the δ unused inputs might

only exist at the final stage, but it was done only for the sake

of simplicity. Even if other stages had unused input capacity,

(B-10) would still hold, given that the total number of such

unused inputs did not differ from δ.

Lemma 4: If an AND (OR) gate may not take more than v

inputs, then it is possible to compute the AND (OR) of n

propositions within  log nv depth of operators.

Proof: The proof continues from the proof of Lemma 3. If n

= v
k
 for any positive integer k, then after each level, the

number of propositions to be calculated at the next level is

reduced by a factor of v. Now, if gate depth is denoted by d,

we get the following result for n = v
k
,

k=d (B-11)

If n = v
k+1

, then we have -

1+k=d (B-12)

The results for n = v
k
 and n = v

k+1
 can be summarized for gate

depth d by the following equation-

 log n=d v (B-13)

Now, if d lies between k and k+1, i.e. v
k
 < n < v

k+1
, then we

can express n as a polynomial of v as given below -

0
1

1-kk a++va+va=n kk − (B-14)

where { }1.0,1,2,....i −∈ v,a and at least two of all ai including

ak must be non-zero.

This means the n propositions are grouped in several sub-

groups so that the number of propositions in each sub-group

is equal to a non-zero term of (B-14); these sub-groups are

processed in parallel. The group having lower number of

propositions (corresponding to a lower order term) is

processed in fewer stages and the final output is then merged

with a larger group. Since there are v – ai ≥ 1 unused inputs at

any (i+1)-th level, this single proposition does not increase

the number of gate levels associated with that term.

This argument holds for all terms up to the highest order term

and it is always possible to calculate the AND of n

propositions in (B-14) to be calculated within k+1 gate levels.

Which is also true for n = v
k+1

.

Considering the three cases of n = v
k
, n = v

k+1
 and v

k
 < n < v

k+1

for arbitrary v and k, we conclude that the gate depth d can be

given by the following formula -

 log n=d v (B-15)

